

Memoria del proyecto para optar al Título de Ingeniero Civil Oceánico

CARACTERIZACIÓN DE LA EVOLUCIÓN DE LA SURGENCIA COSTERA EN CHILE, MEDIANTE EL ANÁLISIS DE TENDECIAS DE VIENTO Y TEMPERATURA SUPERFICIAL DEL MAR

Diego Andrés Silva Díaz

Agosto 2019

CARACTERIZACIÓN DE LA EVOLUCIÓN DE LA SURGENCIA COSTERA EN CHILE, MEDIANTE EL ANÁLISIS DE TENDENCIAS DE VIENTO Y TEMPERATURA SUPERFICIAL DEL MAR

Diego Andrés Silva Díaz

COMISIÓN REVISORA	NOTA	FIRMA
Dra. Catalina Aguirre Galaz Profesora guía		
Claudia Pincheira Araya Meteoróloga SERVIMET		
Mónica Bello Mejía Oceanógrafa		

DECLARACIÓN

Este trabajo, o alguna de sus partes, no ha sido presentado anteriormente en la Universidad de Valparaíso, institución universitaria chilena o extranjera u organismo de carácter estatal, para evaluación, comercialización u otros propósitos. Salvo las referencias citadas en el texto, confirmo que el contenido intelectual de este Proyecto de Título es resultado exclusivamente de mis esfuerzos personales.

La Universidad de Valparaíso reconoce expresamente la propiedad intelectual del autor sobre esta Memoria de Titulación. Sin embargo, en caso de ser sometida a evaluación para los propósitos de obtención del Título Profesional de Ingeniero Civil Oceánico, el autor renuncia a los derechos legales sobre la misma y los cede a la Universidad de Valparaíso, la que estará facultada para utilizarla con fines exclusivamente académicos.

Diego Silva Díaz	Catalina Aguirre Galaz

TABLA DE CONTENIDOS

1		IN	ITRO	DUCCIÓN	1
2		ΑL	_CAN	ICES	2
3		OI	BJET	TIVOS	2
	3.	.1	Ol	BJETIVO GENERAL	2
	_	.2		BJETIVOS ESPECÍFICOS	
4		M	ARC	O TEÓRICO	3
	4.	.1	DI	NÁMICA DE EKMAN	3
	4.	.2	Sl	JRGENCIA COSTERA	4
	4.	.3	DI	NÁMICA DE LA SURGENCIA	
		4.	3.1	ANTICICLÓN	
		4.	3.2	BALANCE GEOSTRÓFICO	
			3.3	OSCILACIÓN DECADAL DEL PACÍFICO	
5		M		DOLOGÍA	
	5.	.1	DO	OCUMENTACIÓN DE LAS BASES DE DATOS UTILIZADAS	
		5.	1.1	MODELOS GLOBALES ATMOSFÉRICOS Y ACOPLADOS	
		5.	1.2	REANÁLISIS	8
		5.	1.3	OBSERVACIONES	
	5.	.2		REA DE ESTUDIO	
		.3		ENTO A LO LARGO DE LA COSTA	
	5.	.4	ΑN	NÁLISIS DE TENDENCIA	
		5.4	4.1		
	5.	.5	A٦	RIBUCIÓN A LA OSCILACIÓN DECADAL DEL PACÍFICO	14
6		RI		_TADOS	
	6.	.1		DMPARATIVA ENTRE BASES DE DATOS	
	6.			NDENCIAS EN PUNTOS DE INTERÉS	
	6.	.3	А٦	RIBUCIÓN A LA PDO	
		6.	3.1	ATRIBUCIÓN DE LA PDO AL VIENTO DE ERA-INTERIM	
		6.	3.2		
			3.3		
7				SIONES Y RECOMENDACIONES	
8				LUSIONES	
9		RI	EFEF	RENCIAS BIBLIOGRÁFICAS	30
1()		ANE	XOS	31

LISTA DE TABLAS

Tabla 5.1: Bases de datos	9
Tabla 8.1: Resumen	
Tabla 10.1: AMIP	
Tabla 10.2: CMIP5 – Diario	32
Tabla 10.3: CMIP5 - Mensual	33
Tabla 10.4: SHOA	34
LISTA DE FIGURAS	
Figura 1: Transporte de masa	4
Figura 2: Surgencia costera	
Figura 3:Estaciones de monitoreo SHOA	
Figura 4: Grados de corrección para viento	
Figura 5: Tendencia del viento solo con viento meridional	
Figura 6: Tendencia del viento aplicando la corrección	
Figura 7: Área de estudio y puntos de interés	
Figura 8: Puntos de comparación para ERA y la PDO	
Figura 9: Mapas de Magnitud Anual [m/s]	
Figura 10: Mapas de Pendiente Anual [m/s/década]	18
Figura 11: Mapas de Pendiente invierno [m/s/década]	19
Figura 12: Mapas de Pendiente verano [m/s/década]	20
Figura 13: Tendencia anual en puntos de interés [m/s/década]	21
Figura 14: Tendencia de invierno en puntos de interés [m/s/década]	
Figura 15: Tendencia de verano en puntos de interés [m/s/década]	22
Figura 16: PDO vs ERA (viento). Pendiente del viento [m/s/década]	24
Figura 17: PDO vs SHOA (TSM). Pendiente de la temperatura [°C/década]	25
Figura 18: PDO vs ERA (TSM). Pendiente de la temperatura [°C/década]	26
Figura 19: Mapas de Pendiente otoño [m/s/década]	35
Figura 20: Mapas de Pendiente primavera [m/s/década]	36
Figura 21: Mapas de Pendiente Comparación CMIP5 [m/s/década],	37
Figura 22: Mapas de Pendiente Anual [m/s/década]	38
Figura 23: Mapas de Pendiente Invierno [m/s/década]	39
Figura 24: Mapas de Pendiente verano [m/s/década]	40
Figura 25: PDO vs SHOA (TSM). Pendiente del viento [m/s/década]	
Figura 26: Serie de tiempo de datos SHOA (promedios anuales), estaciones de Ari	са е
lquique	41
Figura 27: Serie de tiempo de datos SHOA (promedios anuales), estaciones	de
Antofagasta, Caldera, Coquimbo y Valparaíso	42
Figura 28: Serie de tiempo de datos SHOA (promedios anuales), estaciones de Talcahu	ano,
Corral Isla de Pascua y Punta Arenas	43

RESUMEN

En este trabajo se busca caracterizar la evolución de la surgencia costera en Chile a través de la comparación entre distintas bases de datos de viento y temperatura superficial del mar. La surgencia costera es un fenómeno producido por el viento paralelo a la costa, viento el cual se ve influenciado por la existencia del anticiclón del pacífico sur. Para el desarrollo de este estudio se utilizaron bases de datos con distintos orígenes, resoluciones y periodos de datos disponibles; los distintos tipos utilizados se dividen en observación satelital, reanálisis, conjuntos de modelos y mediciones in situ.

La razón de utilizar distintas bases de datos viene dada porque se busca caracterizar la evolución de la surgencia costera y Chile carece de un modelo propio con la cantidad espacial y temporal de datos de viento necesaria para realizar un estudio como este. Esto induce a que se comparen los resultados de distintas bases de datos, utilizando la misma metodología estadística para todas. Todas las bases de datos se analizaron en base a tendencias, las cuales fueron respaldadas mediante el método de Mann-Kendall el cual se asegura que los resultados sean estadísticamente significativos.

Los resultados de los análisis estadísticos se presentan en mapas generales y en gráficas comparativas. Estas demuestran que existe el viento favorable a la surgencia en verano y primavera principalmente, dependiendo de la base de datos se pueden observar que el viento presenta concentraciones de altas velocidades en algunas zonas costeras. Muchas de estas concentraciones de vientos favorables a la surgencia son además significativas estadísticamente, es decir, el viento favorable se mantiene constante por largos periodos de tiempo.

La distribución espacial de las tendencias positivas se concentra en el norte de Chile y en su mayoría son significativas, durante el verano se concentran en el sur y durante el invierno en el norte. Mientras que las tendencias de la temperatura superficial del mar describen a lo largo del país que toda la temperatura tiende a disminuir, en su mayoría, homogéneamente con algunas atenuaciones en sectores al sur de Chile.