

MEMORIA DEL PROYECTO PARA OPTAR AL TÍTULO DE INGENIERO CIVIL OCEÁNICO

"CALIBRACIÓN Y VALIDACIÓN DEL MODELO WAVEWATCH III V. 4.18, PARA SU APLICACIÓN EN LA GENERACIÓN DE UN REANÁLISIS DE OLEAJE EN LAS COSTAS DE CHILE"

JULIO 2017

Héctor Hidalgo Luarte

Comisión Evaluadora: José Beyá M. (Profesor guía); Catalina Aguirre G.; Ariel Gallardo Y.

CONTENIDO

- INTRODUCCIÓN
- OBJETIVOS
- MODELO WAVEWATCH III
 - PARAMETRIZACIONES DE LOS PROCESOS FÍSICOS

Estado del arte

- CLÚSTER DE SERVIDORES
- FUENTES DE INFORMACIÓN
 - CONJUNTO DE DATOS BATIMÉTRICOS Y LINEA DE COSTA
 - REANÁLISIS ATMOSFERICO
 - MEDICIONES INTRUMENTALES
- CALIBRACIÓN Y VALIDACIÓN
 - RESOLUCIÓN Y EXTENSIÓN DEL DOMINIO
 - ESQUEMAS Y PARAMETRIZACIONES FÍSICAS
 - FORZANTES Y CALIBRACIÓN DE ESQUEMAS Y PARAMETRIZACIONES FÍSICAS
 - CUANTIFICACIÓN DEL DESEMPEÑO DE LOS ESCENARIOS DE SIMULACIÓN
 - VALIDACIÓN

Metodología de Calibración y Validación

- RESULTADOS
- CONCLUSIONES Y TRABAJOS FUTUROS

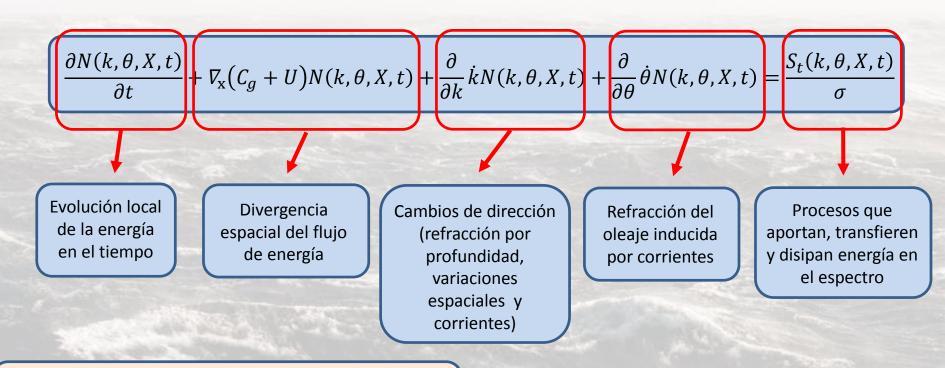
Resultados

INTRODUCCIÓN

- Información de oleaje en Chile escasa y de calidad desconocida.
- La normativa vigente en Chile establece que para todo estudio de oleaje se requiere una base de datos de largo plazo de oleaje espectral.
- Mediciones de oleaje de corta duración y localizadas.
- En la práctica se emplean modelos para suplir la falta de información.
- Existe información de largo plazo proveniente de bases de datos de reanálisis de oleaje de centros de investigación internacionales (parámetros estadísticos y no espectros completos) y empresas privadas (uso restringido y de un alto costo).
- El presente trabajo busca cubrir esta necesidad de información, generando una base de datos de largo plazo de oleaje espectral calibrada y validada para las costas de Chile.

OBJETIVOS

General


• Calibrar y validar el modelo numérico de base física de tercera generación WAVEWATCH III v. 4.18 para las costas de Chile continental e insular, con el objetivo de generar una base de datos de a lo menos 20 años de oleaje espectral.

Específicos

- Determinar la extensión y resolución del dominio computacional y batimétrico, mediante la evaluación el desempeño de las simulaciones en relación a mediciones instrumentales y la comparación de los tiempos de cálculo obtenidos.
- Determinar la combinación de parametrizaciones físicas del modelo, que permitan representar de mejor forma las condiciones de generación y propagación de oleaje desde en la cuenca del Océano Pacífico hacia la costa chilena.
- Determinar la fuente de datos de reanálisis atmosférico que se utilizará para forzar el modelo y ajustar algunas de las parametrizaciones físicas más relevantes que intervienen en el proceso de generación de oleaje, para mejorar los resultados de las simulaciones.
- Establecer una metodología de cuantificación del desempeño de los escenarios de calibración en relación a datos instrumentales.
- Validar la base de datos generada en las costas de Chile continental e insular, mediante la comparación de resultados del modelo calibrado con registros provenientes de dispositivos de medición in-situ y de teledetección.

MODELO WAVEWATCH III

• WAVEWATCH III es un modelo numérico de base física de generación y propagación de oleaje de tercera generación desarrollado por la Marine Modeling and Analysis Brach (MMBA) de la National Centers for Environmental Prediction (NCEP) de la NOAA.

 $N(\sigma, \theta, x, y, t)$ Acción de densidad espectral

Velocidades de grupo

5

 C_{g}

MODELO WAVEWATCH III

• WAVEWATCH III es un modelo numérico de base física de generación y propagación de oleaje de tercera generación desarrollado por la Marine Modeling and Analysis Brach (MMBA) de la National Centers for Environmental Prediction (NCEP) de la NOAA.

$$\frac{\partial N(k,\theta,X,t)}{\partial t} + \nabla_{\mathbf{x}} (C_g + U) N(k,\theta,X,t) + \frac{\partial}{\partial k} \dot{k} N(k,\theta,X,t) + \frac{\partial}{\partial \theta} \dot{\theta} N(k,\theta,X,t) = \frac{S_t(k,\theta,X,t)}{\sigma}$$

$$\dot{k} = -\frac{\partial \sigma}{\partial d} \frac{\partial d}{\partial s} - k \frac{\partial U}{\partial s}$$

$$\dot{\theta} = -\frac{1}{k} \left[\frac{\partial \sigma}{\partial d} \frac{\partial d}{\partial m} + k \frac{\partial U}{\partial m} \right]$$

$$S_{t} = S_{ln} + S_{in} + S_{nl} + S_{ds} + S_{bot} + S_{db} + S_{tr} + S_{sc} + S_{ice} + S_{ref} + S_{xx}$$

 S_{ln} : Crecimiento lineal S_{in} : Crecimiento exponencial S_{ds} : Disipación por rotura en aguas profundas y viento-swell

 S_{nl} : Interacción no lineal entre cuadrupletas ola-ola S_{bot} : Interacción del oleaje con el fondo marino

 \mathcal{S}_{db} : Disipación por rotura del oleaje inducida por fondo \mathcal{S}_{tr} : Interacción no lineal entre triadas Ola-Ola

 S_{sc} : Disipación por dispersión inducida por fondo S_{ice} : Interacción ola-hielo

 S_{ref} : Reflexión por línea de costa y obstáculos S_{xx} : Término fuente definido por el usuario.

Fuente: Tolman H. (2014)

PARAMETRIZACIONES DE LOS PROCESOS FÍSICOS

	Agua	Aguas Costeras					
Proceso	Aguas Oceánicas	Plataforma	Proximidad de	Rada			
	Oceanicas	continental	la costa	portuaria			
Generación por viento	XXX	XXX	X	0			
Interacción no lineal entre cuadrupletas	XXX	XXX	Χ	0			
White-Capping	XXX	XXX	Χ	0			
Fricción de tondo	0	XXX	XX	0			
Refracción inducida por corrientes	O/X	XXX	XX	0			
Refracción y asomeramiento inducidos por fondo	0	XXX	XXX	XX			
Rotura inducida por el fondo	0	XXX	XXX	0			
Interacción no lineal entre triadas	0	0	XX	XX			
Reflexión	0	0	X/XX	XXX			
Difracción	0	0	Χ	XXX			
XXX = Dominante; XX = Significativo; X = Importancia menor; O = Irrelevante							

White-capping

JONSWAP spectrum

wind input

white-capping

white-capping

quadruplet
wave-wave interactions

PARAMETRIZACIONES DE LOS PROCESOS FÍSICOS

PR1 Esquema de propagación

PR1 Esquema de primer orden (Tolman H. , 2014)

UNO Esquema de advección de segundo orden

UQ Ultimate-Quick-Est

Técnica de alivio GSE					
PRO/PR1	Sin técnica de alivio				
PR2	Término difusión corrección				
PR3	Promediación espacial de Tolman				

Switch de compilación

Fuente: Tolman H. (2014)

Parametrizaciones de los procesos físicos	
Crecimiento y Disipación de Energía debido al Viento ($S_{\mathrm{in}},S_{\mathrm{in}},S_{\mathrm{ds}}$)	Switch
Calavari & Malonatte-Rizzoli (1981)	LN1
Spectral seeding WWIII	SEED
WAM cycle 3 (Snyder et al., 1981 & Komen et al., 1984)	ST1
Tolman & Chalikov (1996)	ST2; STAB2
WAM cycle 4 (Bidlot et al., 2005)	ST3:STAB3
Ardhuin et al.(2010)	ST4
BYDRZ	ST6
Interacciones no Lineales entre Cuadrupletas (S _{nl})	Switch
DIA (Aproximación por interacciones discretas) (Hasselmann et al., 1985)	NL1
Integral de Boltzmann (WRT)	NL2
Generalized Multiple DIA (GMD) (Aproximación por interacciones discretas generalizada)	NL3
Disipación Inducida por el Fondo (S_{bot})	Switch
JONSWAP (Hasselmann et al., 1973)	BT1
SHOWEX	BT4
Disipación inducida por fondo fangoso	BT8
Rotura Inducida por Fondo (S _{db})	Switch
Battjes & Janssen 1978	DB1/MLIM
Dispersión por fondo (S _{sc})	Switch
Ardhuin & Magne, 2007	BS1
Interacciones no Lineales entre Triadas (S _{tr})	Switch
Modelo LTA (Eldeberky, 1996)	TR1

Ejemplo

PARAMETRIZACIONES DE LOS PROCESOS FÍSICOS

Ejemplo

$$S_{in}(k,\theta) = \frac{\rho_a}{\rho_w} \frac{\beta_{max}}{\kappa^2} e^Z Z^4 \left(\frac{u_*}{C} + z_\alpha\right)^2 \cos^{p_{in}}(\theta - \theta_u) \sigma N(k,\theta) + S_{out}(k,\theta)$$

Aporte de energía debido al viento según el término ST4

$$(u_*')^2 = \left| u_*^2(\cos\theta_u, \sin\theta_u) - |s_u| \int_0^k \int_0^{2\pi} \frac{S_{in}(k', \theta)}{C}(\cos\theta, \sin\theta) dk' d\theta \right|$$

$$S_{out}(k, \theta) = r_{vis} S_{out, vis}(k, \theta) + r_{tur} S_{out, tur}(k, \theta)$$

$$r_{vis} = 0.5(1 - \tanh((Re - Re_c)/s_7)) \ S_{out,vis}(k,\theta) = -s_5 \frac{\rho_{\alpha}}{\rho_{w}} \{2k\sqrt{2v\sigma}\}N(k,\theta)$$

$$r_{tur} = 0.5(1 + \tan h((Re - Re_c)/s_7)) S_{out,tur}(k,\theta) = -\frac{\rho_{\alpha}}{\rho_{w}} \{16f_e \sigma^2 u_{orb,s}/g\} N(k,\theta)$$

Par.	WWATCH var.	namelist	TEST451	TEST451f	TEST405	TEST500
Zu	ZWND	SIN4	10.0	10.0	10.0	10.0
QΩ	ALPHA0	SIN4	0.0095	0.0095	0.0095	0.0095
β_{\max}	BETAMAX	SIN4	1.52	1.33	1.55	1.52
Pin	SINTHP	SIN4	Z	2	2	2
z_{α}	ZALP	SIN4	0.006	0.006	0.006	0.006
s _u	TAUWSHELTER	SIN4	1.0	1.0	0.0	1.0
81	SWELLF	SIN4	0.8	0.8	0.8	0.8
82	SWELLF2	SIN4	-0.018	-0.018	-0.018	-0.018
83	SWELLF3	SIN4	0.015	0.015	0.015	0.015
Rec	SWELLF4	SIN4	10 ⁵	10 ⁵	10 ⁵	10 ⁵
85	SWELLF5	SIN4	1.2	1.2	1.2	1.2
86	SWELLF6	SIN4	0.	0.	0.	0.
87	SWELLF7	SIN4	2.3×10 ⁵	2.3×10^{5}	0.0	0.0
zr	ZORAT	SIN4	0.04	0.04	0.04	0.04
z _{0,max}	Z0MAX	SIN4	1.002	1.002	0.002	1.002

CLÚSTER DE SERVIDORES CIMFAV-INGENIERÍA CIVIL OCEÁNICA

Rol	Head Node (existente)
Marca y Modelo	Dell R715
Procesadores	2 procesadores AMD Opteron 6378 de 2.4 Ghz de 16 núcleos cada uno
Memoria	32 GB de RAM (16x2GB)
Storage	2 Discos duros SAS de 1 TB, 7.2K (raid 1)
	2 Discos duros SAS de 1.2 TB, 10K (raid 0)

Rol	Node-1 (existente)
Marca y Modelo	Dell R815
Procesadores	4 procesadores AMD Opteron 6378 de 2.4 Ghz de 16 núcleos cada uno
Memoria	256 GB de RAM (32x8GB)
Storage	2 Discos duros SAS de 146 GB, 15K (raid 1)
	2 Discos duros SAS de 1.2 TB, 10K (raid 0)

Rol	Node-2 (existente)
Marca y Modelo	Dell R815
Procesadores	4 procesadores AMD Opteron 6378 de 2.4 Ghz de 16 núcleos cada uno
Memoria	256 GB de RAM (32x8GB)
Storage	2 Discos duros SAS de 146 GB, 15K (raid 1)
	2 Discos duros SAS de 1.2 TB, 10K (raid 0)
	Marca y Modelo Procesadores Memoria

Rol	Node-3 (adquirido)
Marca y Modelo	Dell R815
Procesadores	4 procesadores AMD Opteron 6378 de 2.4 Ghz de 12 núcleos cada uno
Memoria	128 GB de RAM (16x8GB)
Storage	2 Discos duros SAS de 146 GB, 15K (raid 1)
	4 Discos duros SAS de 1 TB, 7.2K (raid 5)
Rol	Node-4 (adquirido)

2 Discos duros SAS de 146 GB, 15K (raid 1)

4 Discos duros SAS de 1 TB. 7.2K (raid 5)

4 procesadores AMD Opteron 6378 de 2.4 Ghz de 12 núcleos cada uno

Marca y Modelo

Procesadores

Memoria

Storage

Dell R815

128 GB de RAM (16x8GB)

Un año de simulación en 2 horas utilizando 48 núcleos

CONJUNTO DE DATOS BATIMÉTRICOS Y LINEA DE COSTA

- Gallardo (2015), comparación de bases de datos GEBCO y ETOPO2v2.
- Batimetría ETOPO2v2 (NGDC, 2006)
 - Resolución 2' x 2' (1,853 km en el ecuador)
 - Latitudes 90° S a 90° N
 - Longitudes 180° W a 180° E
- Línea de costa GSHHG (Wessel & Smith, 1996)

Nivel	Resolución		
Full	0.04Km		
High	0.2Km		
Intermediate	1Km		
Low	5Km		
Crude	25Km		

 Generación de mallas batimétricas y mascaras de obstrucción mediante algoritmo GridGen (Chawla & Tolman, 2013)

REANÁLISIS ATMOSFÉRICO

- Información generada por modelos de predicción atmosférica y reprocesada mediante técnicas de asimilación de datos.
 - Campos de velocidad del viento a 10 m de altura
 - Concentraciones de hielo marino

	Reanálisis	Periodo	de Tiempo	- Doselusión Herizentel	Niveles	Fuente
	Reanalisis	Inicio	Término	Resolución Horizontal	Verticales	Fuente
	R1	1948	actualidad	2.5° x 2.5°	29	CPC [1]
	R2	1979	actualidad	2.5° x 2.5°	29	NCDC [2]
1	CFSR	1979	03/2011	0.5° x 0.5°	64	NOMADS [3]
	CFSv2	2011	actualidad	0.2°, 0.5°,1° y 2.5°	64	NOMADS [4]
	ERA-Interim	1979	actualidad	0.5° x 0.5°	60	ECMWF [5]

^[1] http://www.cpc.ncep.noaa.gov/products/wesley/reanalysis.html

¹²¹ http://www.ncdc.noaa.gov/has/HAS.FileAppRouter?datasetname=NCDOEGR2MON&subqueryby=STATION&applname=&outdest=FILE

^[3] http://nomads.ncdc.noaa.gov/data.php?name=access#cfsr

^[4] http://nomads.ncdc.noaa.gov/data.php?name=access#cfsr

^[5] http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/

MEDICIONES INSTRUMENTALES (BOYAS)

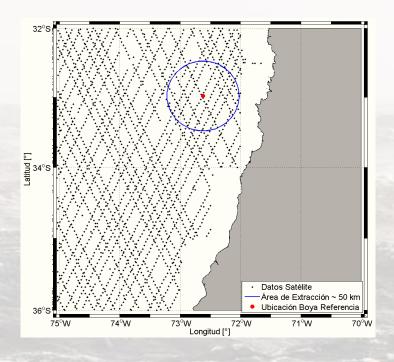
Nombre	Localidad	Ubicación		Profundidad	Profundidad Periodo de medición		- Fuente
Nombre		Lat.[°]	Lon.[°]	[m]	Inicio	Término	ruente
B1	Arica	-19.37	-84.37	5441	2009-10-29	2013-12-31†	NOAA-NDBC
B2	Valparaíso	-32.99	-71.82	465	2009-08-30	2010-10-10	SHOA
В3	Valparaíso	-32.93	-71.67	190	2000-08-01	2003-08-01†	SHOA
В4	Valparaíso	-32.98	-71.62	190	1979-06-07	1981-08-10	SHOA
B5	V Región	-XX.XX	-XX.XX*	150	2011-06-16	2013-12-21†	CORFO-INNOVA*
В6	Constitución	-35.3	-73	710	1984-02-18	1985-02-22	SHOA
В7	VII Región	-XX.XX	-XX.XX	150	2011-09-16	2012-05-16†	CORFO-INNOVA*
B8	XIV Región	-XX.XX	-XX.XX	150	2012-11-21	2013-07-30	CORFO-INNOVA*

^{*} La ubicación exacta de los instrumentos no puede ser revelada debido a un acuerdo de confidencialidad con el proyecto CORFO-INNOVA 09CN14-5718.

[†] Registros no continuos.

NombreTipoIntervalo de tiempo entre registrosCantidad de estados de mar registradosInformación disponible registradosB1Direccional1 hora47380 $S(f)^*, H_{m0}, T_m, D_p$ B2Direccional3 horas3207 $S(f,\theta) + H_{m0}, T_m, D_m$ B3Direccional1 hora14750 $S(f,\theta), H_{m0}, T_m, D_m$ B4Escalar3 horas2290 H_{m0}, T_m B5Direccional1 hora14963 $S(f,\theta), H_{m0}, T_m, D_m$ B6Escalar3 horas2885 H_{m0}, T_m B7Direccional1 hora2394 $S(f,\theta), H_{m0}, T_m, D_m$					
B2 Direccional 3 horas 3207 $S(f,\theta) + H_{m0}, T_m, D_m$ B3 Direccional 1 hora 14750 $S(f,\theta) + H_{m0}, T_m, D_m$ B4 Escalar 3 horas 2290 H_{m0}, T_m B5 Direccional 1 hora 14963 $S(f,\theta) + H_{m0}, T_m, D_m$ B6 Escalar 3 horas 2885 H_{m0}, T_m B7 Direccional 1 hora 2394 $S(f,\theta) + H_{m0}, T_m, D_m$	Nombre Tipo			estados de mar	Información disponible
B3 Direccional 1 hora 14750 $S(f, \theta), H_{m0}, T_m, D_m$ B4 Escalar 3 horas 2290 H_{m0}, T_m B5 Direccional 1 hora 14963 $S(f, \theta), H_{m0}, T_m, D_m$ B6 Escalar 3 horas 2885 H_{m0}, T_m B7 Direccional 1 hora 2394 $S(f, \theta), H_{m0}, T_m, D_m$	B1	Direccional	1 hora	47380	$S(f)^*, H_{m0}, T_m, D_p$
B4 Escalar 3 horas 2290 H_{m0} , T_m B5 Direccional 1 hora 14963 $S(f, \theta)$, H_{m0} , T_m , D_m B6 Escalar 3 horas 2885 H_{m0} , T_m B7 Direccional 1 hora 2394 $S(f, \theta)$, H_{m0} , T_m , D_m	B2	Direccional	3 horas	3207	$S(f,\theta) \uparrow, H_{m0}, T_m, D_m$
B5 Direccional 1 hora 14963 $S(f,\theta), H_{m0}, T_m, D_m$ B6 Escalar 3 horas 2885 H_{m0}, T_m B7 Direccional 1 hora 2394 $S(f,\theta), H_{m0}, T_m, D_m$	В3	Direccional	1 hora	14750	$S(f,\theta), H_{m0}, T_m, D_m$
B6 Escalar 3 horas 2885 H_{m0}, T_m B7 Direccional 1 hora 2394 $S(f, \theta), H_{m0}, T_m, D_m$	B4	Escalar	3 horas	2290	H_{m0} , T_m
B7 Directional 1 hora 2394 $S(f,\theta), H_{m0}, T_m, D_m$	B5	Direccional	1 hora	14963	$S(f,\theta), H_{m0}, T_m, D_m$
	В6	Escalar	3 horas	2885	H_{m0} , T_m
	В7	Direccional	1 hora	2394	$S(f,\theta), H_{m0}, T_m, D_m$
B8 Directional 1 hora 5066 $S(f,\theta), H_{m0}, T_m, D_m$	В8	Direccional	1 hora	5066	$S(f,\theta), H_{m0}, T_m, D_m$

S(f): Espectro de oleaje en el dominio de la frecuencia.

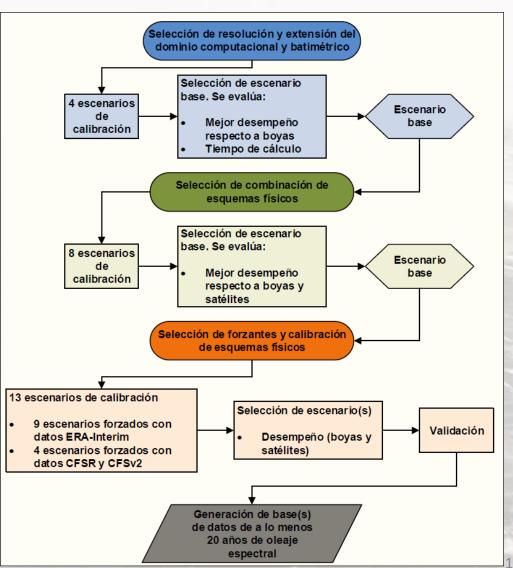

Registros en aguas profundas de 6 boyas direccionales y 2 escalares.

Información facilitada por el proyecto CORFO-INNOVA 09CN14-5718 y el Servicio Hidrográfico y Oceanográfico de la Armada.

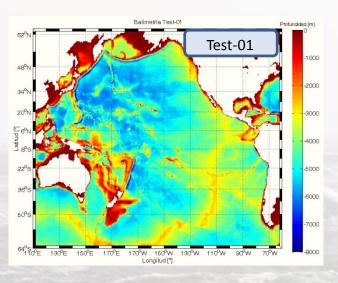
 $S(f,\theta)$: Espectro de oleaje en el dominio de la frecuencia y la dirección

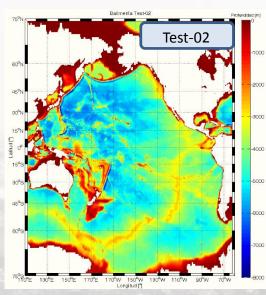
MEDICIONES INSTRUMENTALES (SATÉLITES, PROYECTO ESA-GLOBWAVE)

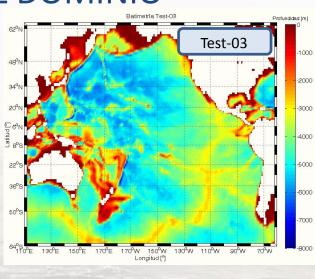
- Globwave es una iniciativa de la European Space Agency (ESA), cuyo objetivo es facilitar datos de oleaje para usos científicos, operacionales y comerciales.
 - Nivel de procesamiento L2P
 - Formato estandarizado
 - Información respecto a la calidad del dato entregado
- 6misiones utilizadas
- Metodología de extracción de datos en torno a un área circular de radio 50 Km.


Nowhyo	Mición	Duración d	Duración de la misión		
Nombre	Misión	Inicio	Término	N° de ciclos	
Sat1	ERS-1	1992-02-01	1996-06-02	3, 35 o 168 días*	
Sat2	ERS-2	1995-05-15	2003-05-22	35 días	
Sat3	ENVISAT	2002-08-26	2012-04-08	2 o 25 días	
Sat4	Topex-Poseidon	1992-09-25	2005-10-08	10 días	
Sat5	Jason-1	2002-02-15	a la fecha	10 días	
Sat6	GFO	2000-01-08	2008-07-23	17 días	
* Ciclos variables de 2 25 y 169 días	dobido a la falta do rutas f	iiac da naca dal ca	tálita an al glaba	torrostro	

METODOLOGIA DE CALIBRACIÓN Y VALIDACIÓN


Calibración en tres etapas:


- Resolución y extensión dominio computacional
- Selección de esquemas parametrizaciones físicas
- Selección de forzantes calibración de parametrizaciones


	1981 a 1985
Periodos de	1992 a 1993
simulación	2000 a 2003
	2007 a 2013

RESOLUCIÓN Y EXTENSIÓN DEL DOMINIO

75°N	Batimetría Test-04	Profundidad [m]
60°N	Test-04	-1000
45°N		2000
30 ⁰ N		3000
Latind 13		4000
30°S		5000
45°S		
eo°s		-7000
75°8 110°E 130°E 150°E 170°I	E 170°W 150°W 130°W 110°W 50°\ Longitud (°)	N 70 ^P W -8000

	Escenario	Resolución	Rango longitud [°]	Rango latitud [°]	Cantidad de puntos de malla	Cantidad de puntos activos	Fuente batimetría	Fuente línea de costa y sub- mallas
	Test-01	0.5° x 0.5°	-64 a 64	110 a 300	97660	75585	Etopo2v2	GSHHG/Full
7	Test-02	0.5° x 0.5°	-75 a 75	110 a 300	114380	85375	Etopo2v2	GSHHG/Full
ľ	Test-03	1° x 1°	-64 a 64	110 a 300	24510	18765	Etopo2v2	GSHHG/Full
	Test-04	1° x 1°	-75 a 75	110 a 300	28690	20854	Etopo2v2	GSHHG/Full

CHILD AND ASSESSMENT OF THE PARTY OF THE PAR	
Resolución espectral	29 frecuencias , 24 direcciones
Frecuencia inicial	0.0345 s
Frecuencia final	0.4975 s
Dirección inicial	7.5°
Dirección final	352.5°
Forzantes	ERA-Interim
Compilación modelo	Switch Ifremer
Periodo de simulación	01/01/2013 hasta 31/12/2013

Escenario base

ESQUEMAS Y PARAMETRIZACIONES FÍSICAS

Escenario	Término (S_{ln})	Paquete de crecimiento y disipación (S_{in})	Interacciones no lineales (S_{nl})	Técnica de alivio de GSE y esquema de propagación
Test-08	SEED	ST1	DIA	PR3 / UQ
Test-09	SEED	ST2/STAB2	DIA	PR3 / UQ
Test-10	SEED	ST3/STAB3	DIA	PR3 / UQ
Test-11	SEED	ST4	DIA	PR3 / UQ
Test-12	SEED	ST6	DIA	PR3 / UQ
Test-13	SEED	ST4	GMD	PR3 / UQ
Test-14	SEED	ST4	DIA	PR2 / UQ
Test-15	LN1	ST4	DIA	PR3 / UQ

1981 a 1985
Periodos de 1992 a 1993
simulación 2000 a 2003
2007 a 2013

Nombre	Zona	Ubica	ción	Fuente	
Nombre	ZONA	Lat. [°]	Lon. [°]	ruente	
B1	NORTE	-19.37	-84.37	NOAA-NDBC	
S1	NORTE	-19.37	-84.37	ESA Globwave	
B2	CENTRO	-32.99	-71.82	SHOA	
S2	CENTRO	-32.99	-71.82	ESA Globwave	
В3	CENTRO	-32.93	-71.67	SHOA	
S3	CENTRO	-32.93	-71.67	ESA Globwave	
B5	CENTRO	-XX.XX	-XX.XX	CORFO-INNOVA	
S 5	CENTRO	-XX.XX	-XX.XX	ESA Globwave	
В7	SUR	-XX.XX	-XX.XX	CORFO-INNOVA	
S7	SUR	-XX.XX	-XX.XX	ESA Globwave	
В8	SUR	-XX.XX	-XX.XX	CORFO-INNOVA	
S8	SUR	-XX.XX	-XX.XX	ESA Globwave	

FORZANTES Y CALIBRACIÓN DE ESQUEMAS Y PARAMETRIZACIONES FÍSICAS

Eccapario		Crecimie	ento S_{in}	Disipaci	ón S_{ds}	Formonto
	Escenario	Betamax	$Z_{0,max}$	C_{ds}^{sat}	B_r	Forzante
	Test-11¥	1.52	1.002	-0.000022	0.0009	ERA
	Test-16	1.15	1.002	-0.000022	0.0009	ERA
	Test-17	1.33	1.002	-0.000022	0.0009	ERA
	Test-18	1.425	1.002	-0.000022	0.0009	ERA
	Test-19	1.52	1.002	-0.000022	0.0008	ERA
ì	Test-20	1.425	1.002	-0.000022	0.00085	ERA
	Test-21	1.4	1.002	-0.000022	0.00085	ERA
	Test-22	1.52	1.002	-0.00003	0.0009	ERA
	Test-23¥	1.52	1.002	-0.000022	0.0009	ERA
	Test-24	1.52	1.01	-0.000022	0.0009	ERA
	Test-07B	1.33	1.002	-0.000022	0.0009	CFSR y CFSv2
	Test-08B	1.52	1.002	-0.000022	0.0009	CFSR y CFSv2
	Test-09B	1.4	1.002	-0.000022	0.0009	CFSR y CFSv2
	Test-10B	1.2	1.002	-0.000022	0.0009	CFSR y CFSv2
	26 4 116	. 1	1			

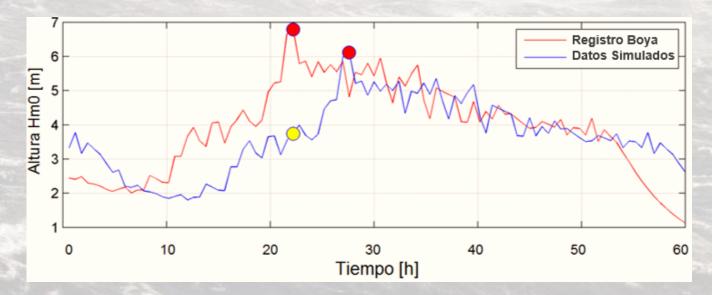
¥, La diferencia entre el Test-11 y el Test-23 es el paso de tiempo del modelo. Para el segundo se utiliza un paso de tiempo global de 3600 segundos

	1981 a 1985
Periodos de	1992 a 1993
simulación	2000 a 2003
	2007 a 2013

Nombre	Zona	Ubic	ación	Fuente
Hombre	20114	Lat.[°]	Lon.[°]	ruciite
B1	Norte	-19.37	-84.37	NOAA-NDBC
S2	Norte	-19	-72	ESA Globwave
S3	Norte	-20	-72	ESA Globwave
S4	Norte	-22	-72	ESA Globwave
S5	Norte	-23.5	-71.5	ESA Globwave
S6	Norte	-25	-72	ESA Globwave
B2	Centro	-32.99	-71.82	SHOA
В3	Centro	-32.93	-71.67	SHOA
B5	Centro	-XX.XX	-XX.XX	CORFO-INNOVA
S10	Centro	-28	-72.5	ESA Globwave
S11	Centro	-31	-73	ESA Globwave
S12	Centro	-35	-73.5	ESA Globwave
S13	Centro	-38	-74.5	ESA Globwave
В7	Centro	-XX.XX	-XX.XX	CORFO-INNOVA
B8	Centro	-XX.XX	-XX.XX	CORFO-INNOVA
S16	Centro	-40	-74.5	ESA Globwave
S17	Centro	-42	-75	ESA Globwave
S18	Sur	-44	-76.5	ESA Globwave
S19	Sur	-46	-77.5	ESA Globwave
S20	Sur	-48	-77.5	ESA Globwave
S21	Sur	-53	-76	ESA Globwave
S22	Sur	-57	-68	ESA Globwave
S23	Insular	-27	-110	ESA Globwave
S24	Insular	-34	-81	ESA Globwave

- Establecer un único valor que permita estimar la calidad de los escenarios de simulación.
- Único valor = "Índice de Desempeño Único (IDU)".
- Combinación lineal de indicadores estadísticos normalizados sobre la base de un análisis multicriterio, que tiene por objetivo establecer factores de importancia a cada estadígrafo, tipo de análisis y parámetro de oleaje.

Indicador Estadístico	Ecuación
Error absoluto medio (MAE)	$MAE = \frac{1}{N} \sum_{i=1}^{N} P_i - O_i $
Error cuadrático medio (RMSE)	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)^2}$
Error medio (BIAS)	$BIAS = \frac{1}{N} \sum_{i=1}^{N} P_i - O_i$
Índice de SS (SS)	$SS = 1 - \sqrt{\frac{\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)^2}{\frac{1}{N} \sum_{i=1}^{N} O_i^2}}$ $R^2 = \frac{Cov(O, P)^2}{s_o^2 s_p^2}$
Coeficiente de determinación (${ m R}^2$)	$R^2 = \frac{Cov(O,P)^2}{s_o^2 s_p^2}$ Donde Cov(O,P) es la covarianza entre O y P y S_o , S_n desviaciones típicas de


Indicadores estadísticos de tendencia central

de $O \lor P$ respectivamente.

Promedio de la diferencia entre alturas extremas (PDAExt)

Promedio de las diferencias entre las alturas máximas registradas por la boya, obtenidas mediante la metodología Peak Over Threshold (POT), y la máximas alturas simuladas contenidas dentro de una ventana de tiempo de 1.5 días antes y 1.5 días después de la fecha de cada evento extremo registrado por la boya y obtenido mediante POT (Figura 4-6).

- Establecer un **único valor** que permita estimar la **calidad** de los escenarios de simulación.
- Único valor = "Índice de Desempeño Único (IDU)".
- Combinación lineal de indicadores estadísticos normalizados sobre la base de un análisis multicriterio, que tiene por objetivo establecer factores de importancia a cada estadígrafo, tipo de análisis y parámetro de oleaje.

Desfase temporal de la altura máxima simulada y registrada por la boya. Los círculos rojos indican las alturas máximas. El circulo amarillo muestra la altura simulada coincidente en el tiempo con la máxima altura registrada por la boya.

ambas series

CUANTIFICACIÓN DEL DESEMPEÑO DE LOS ESCENARIOS DE SIMULACIÓN

- Establecer un único valor que permita estimar la calidad de los escenarios de simulación.
- Único valor = "Índice de Desempeño Único (IDU)".
- Combinación lineal de indicadores estadísticos normalizados sobre la base de un análisis multicriterio, que tiene por objetivo establecer factores de importancia a cada estadígrafo, tipo de análisis y parámetro de oleaje.

Indicadores Estadísticos Circulares	Ecuación Estadística	
Error absoluto medio (MAE)	$MAE = \frac{1}{N} \sum_{i \in I} O_i - P_i + \frac{1}{N} \sum_{i \in I^c} (360 - O_i - P_i) $ $\text{Donde I = } \{i \in \{1, 2, 3,, N\} / O_i - P_i \le 180 \} \text{y } I^c = \{1, 2, 3,, N\} \setminus I$.998)
Error cuadrático medio (<i>RMSE</i>)	$RMSE = \sqrt{\frac{1}{N} \sum_{i \in I} (O_i - P_i)^2 + \frac{1}{N} \sum_{i \in I^c} (360 - O_i - P_i)^2}$ Donde I = $\{i \in \{1, 2, 3,, N\} \mid O_i - P_i \le 180 \}$ y $I^c = \{1, 2, 3,, N\} \setminus I$. .
Coeficiente de determinación (R^2)	$R^{2} = \left(\frac{4\left[\left(\sum_{i=1}^{N}\cos O_{i}\cos P_{i}\right)\left(\sum_{i=1}^{N}\sin O_{i}\sin P_{i}\right) - \left(\sum_{i=1}^{N}\cos O_{i}\sin P_{i}\right)\left(\sum_{i=1}^{N}\sin O_{i}\cos P_{i}\right)\right]}{\left[N^{2} - \left(\sum_{i=1}^{N}\cos\left(2O_{i}\right)\right)^{2} - \left(\sum_{i=1}^{N}\sin\left(2O_{i}\right)\right)^{2}\right]\left[N^{2} - \left(\sum_{i=1}^{N}\cos\left(2P_{i}\right)\right)^{2} - \left(\sum_{i=1}^{N}\sin\left(2P_{i}\right)\right)^{2}\right]}\right)$	
P_i y O_i corresponden a	los datos modelados y observados en el instante i respectivamente, mientras que N es la cantidad de datos coincidentes y comparables en	21

circular

Clima Medio

- Comparación de datos simulados coincidentes en el tiempo con mediciones de boyas.
- Comparación de datos simulados coincidentes en el tiempo con mediciones de satelitales.
- Comparación de casos representativos de grupos de datos (clústeres) obtenidos de registros de boya, mediante la metodología *Maximum Dissimilarity Algorithm (MDA)* (Camus et al., 2011), con datos simulados coincidentes en el tiempo.

Clima Extremo

- Comparación de datos simulados coincidentes en el tiempo con mediciones de boyas, cuyas alturas se encuentren sobre el percentil 95 ($H_{m0} > H_{m0_{050/2}}$).
- Comparación de datos simulados coincidentes en el tiempo con mediciones de satélites, cuyas alturas se encuentren sobre el percentil 95 ($H_{m0} > H_{m0_{95\%}}$).
- Comparación de eventos extremos seleccionados de registros de boya, mediante la metodología *Peak Over Threshold (POT)*, con las máximas alturas obtenidas de las simulaciones, dentro de una ventana de tiempo de ±1.5 días respecto a la fecha de cada evento extremo registrado por la boya.

PASO 1: Definición de casos de comparación

Cálculo de indicadores estadísticos de tendencia central y estadística circular para todos los casos definidos en el paso 1, salvo para el caso tres de clima extremo. En este último se determinará el indicador *PDAExt*.

PASO 2: Cálculo de Indicadores

$$X_{i-norm} = \frac{X_i - min(X)}{max(X) - min(X)}; \qquad 0 \ge X_{i-norm} \ge 1, \textbf{\textit{Para }} \textbf{\textit{R}}^2 \textbf{\textit{y}} \textbf{\textit{SS}}$$

$$X_{i-norm} = 1 - \frac{X_i - min(X)}{max(X) - min(X)}; \qquad 0 \ge X_{i-norm} \ge 1, \textbf{\textit{Para MAE y RMSE}}$$

$$X_{i-norm} = 1 - \frac{X_i - min(abs(X))}{max(abs(X)) - min(abs(X))}; \qquad 0 \ge X_{i-norm} \ge 1, \textbf{\textit{Para BIAS y PDAExt}}$$

PASO 3: Normalización de indicadores estadísticos

- Asignación de un factor de importancia relativa a cada indicador estadístico.
- Asignación de un factor de importancia relativa para cada método de comparación expuesto en el Paso 1.
- Asignación de un factor de importancia relativa a los parámetros de resumen H_{m0} , T_m y D_m .

PASO 4: Asignación de factores de importancia

Parámetros Oleaje	Factor de Importancia				
Hm0	0.33				
Tm	0.33				
Dm	0.33				
Total ∑	1				
Indicador estadístico	Factor de Importancia				
MAE	0.2				
RMSE	0.2				
BIAS	0.2				
SS	0.2				
R^2	0.2				
Total ∑	1				
Tipo de comparación	Factor de Importancia				
Global [Boyas] [Allb]	0.16				
P95 [Boyas] [5%b]	0.14				
Global [Satélites] [Alls]	0.14				
P95 [Satélites] [5%s]	0.14				
Clúster clima medio [Boyas] [3bMDA]	0.14				
POT clima extremo [Boyas] [3b]	0.14				
PDAExt [Boyas] [MAE_ext]	0.14				
Total ∑	1				

Factores de importancia para la etapa de selección de esquemas y parametrizaciones físicas

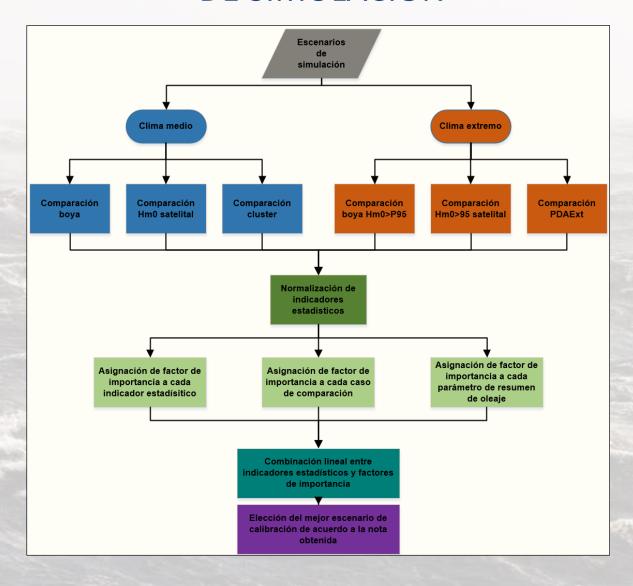
- Asignación de un factor de importancia relativa a cada indicador estadístico.
- Asignación de un factor de importancia relativa para cada método de comparación expuesto en el Paso 1.
- Asignación de un factor de importancia relativa a los parámetros de resumen H_{m0} , T_m y D_m .

PASO 4: Asignación de factores de importancia

	Global	Solo Clima Extremo	Solo Clima Medio	Global Mayor Ponderación Hm0
Parámetros Oleaje	Factor de Importancia	Factor de Importancia	Factor de Importancia	Factor de Importancia
H_{m0}	0.33	0.33	0.33	0.5
T_m	0.33	0.33	0.33	0.25
D_{m}	0.33	0.33	0.33	0.25
Total ∑	1	1	1	1
Indicador estadístico	Factor de Importancia	Factor de Importancia	Factor de Importancia	Factor de Importancia
MAE	0.2	0.2	0.2	0.2
RMSE	0.2	0.2	0.2	0.2
BIAS	0.2	0.2	0.2	0.2
Skill	0.2	0.2	0.2	0.2
R^2	0.2	0.2	0.2	0.2
Total ∑	1	1	1	1
Tipo de comparación	Factor de Importancia	Factor de Importancia	Factor de Importancia	Factor de Importancia
Global [Boyas] [Allb]	0.16	0	0.33	0.16
P95 [Boyas] [5%b]	0.14	0.25	0	0.14
Global [Satélites] [Alls]	0.14	0	0.33	0.14
P95 [Satélites] [5%s]	0.14	0.25	0	0.14
Clúster clima medio [Boyas] [3bMDA]	0.14	0	0.33	0.14
POT clima extremo [Boyas] [3b]	0.14	0.25	0	0.14
PDAExt [Boyas] [MAE_ext]	0.14	0.25	0	0.14
Total ∑	1	1	1	1

Factores de importancia para la etapa de selección de forzantes y calibración de parametrizaciones físicas

Mediante una combinación lineal entre los métodos de comparación y los factores de importancia relativa se cuantifica el desempeño de los escenarios de simulación obteniendo una nota entre 0 y 1 para cada escenario.


$$IDU_{(i,k,l)}^{EP} = \sum_{j=1}^{5} \omega_{(j)}^{EP} \times X_{norm_{(i,j,k,l)}} \qquad con j = MAE, R^2, RMSE, SS, BIAS$$

$$IDU_{(i,l)}^{WP} = \sum_{k=0}^{3} \omega_{(k)}^{WP} \times IDU_{(i,k,l)}^{EP} \qquad con \ k = H_{m0}, T_m, D_m$$

$$IDU_{(i)}^{TD} = \sum_{l=1}^{7} \omega_{(l)}^{TD} \times IDU_{(i,l)}^{WP}$$
 con $l = Allb, Alls, 5\%b, 5\%s, 3bMDA, 3b, MAE_{ext}$

i representa cada escenario, , j es cada indicador estadístico, k cada parámetro de oleaje , l cada tipo de análisis realizado, $\omega_{(j)}^{EP}$ es el peso asignado a cada indicador estadístico. $\omega_{(k)}^{WP}$ es el peso asignado a cada parámetro de oleaje y $\omega_{(l)}^{TD}$ el peso a signado a cada tipo de comparación realizada.

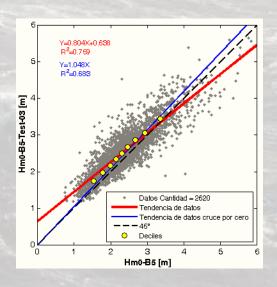
PASO 5: Determinación del IDU

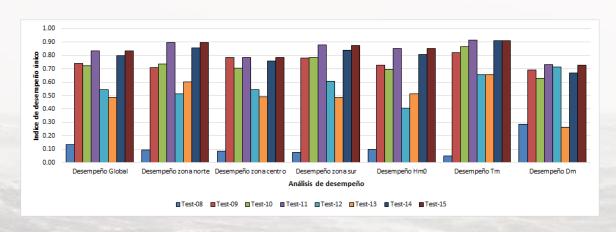


VALIDACIÓN

- Comparación de espectros registrados por la boya B5 y espectros obtenidos a partir del modelo calibrado
 - Aplicación del indicador RMSE y BIAS a los espectros promediados en el tiempo
 - Comparación cualitativa de la forma espectral mediante la aplicación de envolventes y percentiles de componentes de frecuencia y dirección del espectro

• Comparación de H_{m0} obtenidas de altímetros satelitales en 46 nodos ubicados frente a las costas de Chile continental e insular.

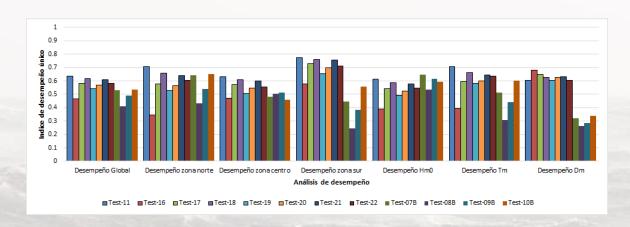

Satélite	Ubic	ación	Satélite	Ubic	ación
Validación			Validación		
#	Latitud [°]	Longitud [°]	#	Latitud [°]	Longitud [°]
SV1	-18	-73	SV24	-41	-76
SV2	-19	-73	SV25	-42	-76
SV3	-20	-73	SV26	-43	-76
SV4	-21	-73	SV27	-44	-77
SV5	-22	-73	SV28	-45	-77
SV6	-23	-73	SV29	-46	-77
SV7	-24	-73	SV30	-47	-77
SV8	-25	-73	SV31	-48	-77
SV9	-26	-74	SV32	-49	-78
SV10	-27	-74	SV33	-50	-78
SV11	-28	-74	SV34	-51	-78
SV12	-29	-74	SV35	-52	-78
SV13	-30	-74	SV36	-53	-78
SV14	-31	-74	SV37	-54	-78
SV15	-32	-74	SV38	-55	-78
SV16	-33	-74	SV39	-27	-109
SV17	-34	-74	SV40	-27	-110
SV18	-35	-75	SV41	-28	-109
SV19	-36	-75	SV42	-28	-110
SV20	-37	-75	SV43	-33	-78
SV21	-38	-75	SV44	-34	-78
SV22	-39	-75	SV45	-33	-82
SV23	-40	-75	SV46	-34	-82


RESOLUCIÓN Y EXTENSIÓN DEL DOMINIO

		B1				В	5			B8	3	
	Test-01	Test-02	Test-03	Test-04	Test-01	Test-02	Test-03	Test-04	Test-01	Test-02	Test-03	Test-04
N° Datos		291	6			26	20			140)5	
						Hm0						
MAE[m]	0.202	0.204	0.205	0.204	0.400	0.401	0.307	0.302	0.400	0.417	0.284	0.277
RMSE[m]	0.255	0.256	0.253	0.254	0.498	0.497	0.392	0.397	0.482	0.501	0.353	0.359
BIAS[m]	0.091	0.093	0.106	0.098	0.334	0.332	0.168	0.149	0.328	0.346	0.096	0.134
R^2	0.874	0.871	0.879	0.875	0.757	0.755	0.759	0.755	0.855	0.847	0.870	0.867
						Tm						
MAE [s]	0.483	0.484	0.464	0.470	0.793	0.788	0.844	0.843	0.689	0.733	0.656	0.671
RMSE[s]	0.685	0.687	0.657	0.664	1.029	1.030	1.056	1.058	0.925	0.982	0.868	0.887
BIAS[s]	-0.064	-0.036	-0.076	-0.051	-0.129	-0.086	-0.355	-0.322	0.369	0.468	0.175	0.223
R^2	0.750	0.750	0.764	0.761	0.552	0.555	0.563	0.563	0.705	0.701	0.700	0.702
						Dm						
<i>MAE</i> [°]	26.011	26.037	26.089	26.131	13.855	14.250	13.154	13.532	10.769	11.561	9.065	9.528
<i>RMSE</i> [°]	34.094	34.116	34.176	34.228	16.598	16.966	15.902	16.289	13.646	14.430	11.739	12.197
BIAS [°]	-17.346	-17.426	-17.534	-17.638	-12.702	-13.234	-11.575	-12.106	-9.265	-10.311	-6.775	-7.524
R^2	0.408	0.409	0.411	0.412	0.472	0.471	0.470	0.467	0.736	0.733	0.756	0.756

Escenario	Resolución	Latitud	Longitud	Puntos activos	Tiempo por año de simulación [h:min]	<i>RMSE</i> <i>H</i> _{m0} [m]	$RMSE$ T_m [s]	<i>RMSE</i> <i>D_m</i> [º]	$BIAS$ H_{m0} [m]
Test-01	0.5° x 0.5°	64°N – 64°S	110°E – 60°W	75585	13:17	0.41	0.88	21.4	0.25
Test-02	0.5° x 0.5°	75°N – 75°S	110°E – 60°W	85375	22:23	0.42	0.90	21.8	0.26
Test-03	1.0° x 1.0°	64°N – 64°S	110°E – 60°W	18765	02:10	0.33	0.86	20.6	0.12
Test-04	1.0° x 1.0°	75°N – 75°S	110°E – 60°W	20854	03:39	0.34	0.87	20.9	0.13

ESQUEMAS Y PARAMETRIZACIONES FÍSICAS



Escenario	Término de inicialización	Crecimiento y disipación	Interacciones no lineales	Esquema de propagación y	$MPS_{(i)}^{TD}$
Escendio	(S_{ln})	(S_{in})	(S_{nl})	técnica de Alivio de GSE	$m_{i,j}$
Test-08	SEED	ST1	NL2	PR3 / UQ	0.134
Test-09	SEED	ST2/STAB2	NL2	PR3 / UQ	0.742
Test-10	SEED	ST3/STAB3	NL2	PR3 / UQ	0.722
Test-11	SEED	ST4	NL2	PR3 / UQ	0.837
Test-12	SEED	ST6	NL2	PR3 / UQ	0.545
Test-13	SEED	ST4	NL3	PR3 / UQ	0.487
Test-14	SEED	ST4	NL2	PR2 / UQ	0.800
Test-15	LN1	ST4	NL2	PR3 / UQ	0.835

Ranking de	Escenario			nario		nario	Escenario		
_	Glo	Global		Hm0		Tm)m	
desempeño	IDU	Test	IDU	Test	IDU	Test	IDU	Test	
1	0.837	Test-11	0.851	Test-11	0.914	Test-11	0.730	Test-11	
2	0.835	Test-15	0.851	Test-15	0.912	Test-14	0.730	Test-15	
3	0.800	Test-14	0.809	Test-14	0.909	Test-15	0.668	Test-14	

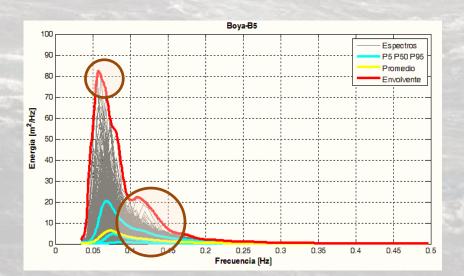
FORZANTES Y CALIBRACIÓN DE ESQUEMAS Y PARAMETRIZACIONES FÍSICAS

	Ranking de	Escenai	rio Global	Escer	nario Hm0	Escer	nario Tm	Escena	rio Dm
	desempeño	IDU	Test	IDU	Test	IDU	Test	IDU	Test
	1	0.63	Test-11	0.65	Test-07_B	0.7	Test-11	0.68	Test-16
Global	2	0.62	Test-18	0.62	Test-09_B	0.66	Test-18	0.65	Test-17
	3	0.61	Test-21	0.61	Test-11	0.65	Test-21	0.63	Test-21
	1	0.52	Test-11	0.73	Test-08_B	0.59	Test-11	0.59	Test-16
Clima Extremo	2	0.47	Test-18	0.69	Test-07_B	0.49	Test-10_B	0.53	Test-17
	3	0.46	Test-21	0.67	Test-09_B	0.48	Test-18	0.51	Test-21
	1	0.72	Test-11	0.74	Test-18	0.76	Test-11	0.72	Test-16
Clima Medio	2	0.72	Test-21	0.74	Test-21	0.74	Test-18	0.69	Test-17
	3	0.72	Test-18	0.73	Test-22	0.74	Test-21	0.68	Test-21
Challed Marian	1	0.63	Test-11	0.64	Test-07_B	0.7	Test-11	0.67	Test-16
Global Mayor	2	0.62	Test-18	0.61	Test-09_B	0.66	Test-18	0.64	Test-17
Ponderación Hm0	3	0.61	Test-21	0.6	Test-11	0.64	Test-21	0.63	Test-21

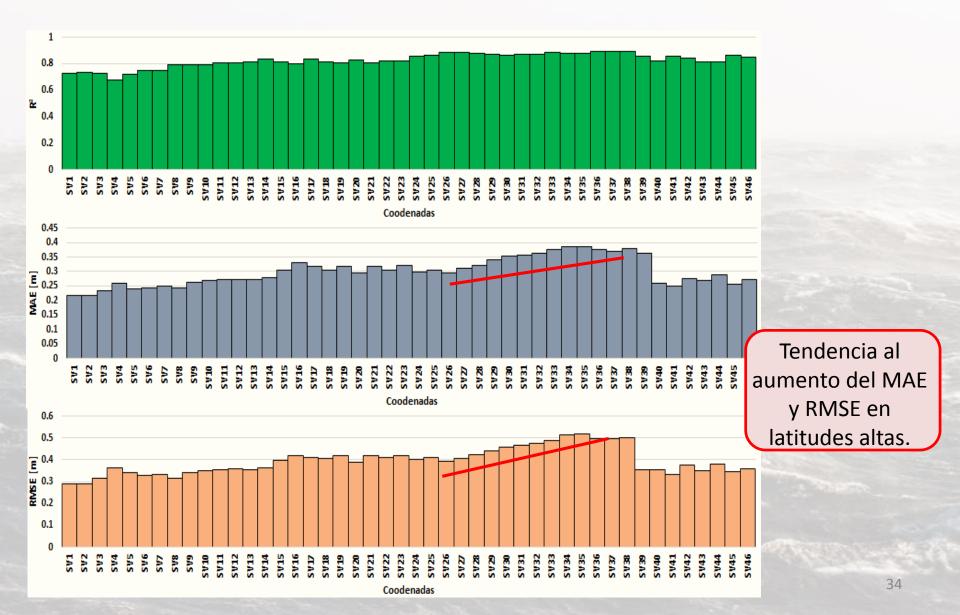
FORZANTES Y CALIBRACIÓN DE ESQUEMAS Y PARAMETRIZACIONES FÍSICAS

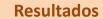
	Crecimi	ento S_{in}	Disipaci	ón S _{ds}		Mod	del performano	e criteria <i>M</i>	$PS_{(i)}^{TD}$
Test	β_{max}	$Z_{0,max}$	C_{ds}^{sat}	B_r	Forzante	Global	Clima extremo	Clima medio	Global mejorado
Test-11 (1,2)	1.520	1.002	-2.2 x 10 ⁻⁵	0.00090	ERA-Interim	0.634	0.511	0.708	0.634
Test-16	1.150	1.002	-2.2 x 10 ⁻⁵	0.00090	ERA-Interim	0.485	0.270	0.629	0.465
Test-17	1.330	1.002	-2.2 x 10 ⁻⁵	0.00090	ERA-Interim	0.589	0.409	0.704	0.582
Test-18	1.425	1.002	-2.2 x 10 ⁻⁵	0.00090	ERA-Interim	0.620	0.470	0.714	0.617
Test-19	1.520	1.002	-2.2 x 10 ⁻⁵	0.00080	ERA-Interim	0.554	0.357	0.683	0.543
Test-20	1.425	1.002	-2.2 x 10 ⁻⁵	0.00085	ERA-Interim	0.578	0.393	0.698	0.570
Test-21	1.400	1.002	-2.2 x 10 ⁻⁵	0.00085	ERA-Interim	0.613	0.454	0.713	0.609
Test-22	1.520	1.002	-3.0 x 10 ⁻⁵	0.00090	ERA-Interim	0.590	0.414	0.703	0.584
Test-23 (1)	1.520	1.002	-2.2 x 10 ⁻⁵	0.00090	ERA-Interim	0.634	0.511	0.708	0.634
Test-24	1.520	1.010	-2.2 x 10 ⁻⁵	0.00090	ERA-Interim	0.633	0.511	0.708	0.633
Test-07B	1.330	1.002	-2.2 x 10 ⁻⁵	0.00090	CFSR-CFSv2	0.489	0.413	0.534	0.532
Test-08B	1.520	1.002	-2.2 x 10 ⁻⁵	0.00090	CFSR-CFSv2	0.365	0.326	0.353	0.410
Test-09B	1.400	1.002	-2.2 x 10 ⁻⁵	0.00090	CFSR-CFSv2	0.443	0.359	0.476	0.489
Test-10B	1.200	1.002	-2.2 x 10 ⁻⁵	0.00090	CFSR-CFSv2	0.508	0.376	0.578	0.533

VALIDACIÓN


	B1	B2	В3	B5	В7	В8					
	H_{m0}										
N° Datos	15792	3207	4250	5001	793	1685					
MAE	0.21	0.33	0.34	0.30	0.25	0.28					
RMSE	0.27	0.43	0.43	0.40	0.34	0.36					
BIAS	0.11	0.23	0.23	0.15	0.02	0.12					
Skill	0.89	0.83	0.81	0.84	0.87	0.86					
R^2	0.86	0.75	0.73	0.76	0.79	0.87					
			T_m								
MAE	0.45		2.58	0.83	0.62	0.63					
RMSE	0.62		2.83	1.07	0.83	0.84					
BIAS	0.09	Sin Datos	2.55	0.23	0.21	0.16					
Skill	0.92		0.73	0.87	0.90	0.90					
R^2	0.78		0.54	0.57	0.78	0.73					
			D_m								
MAE		7.76	9.77	13.13	7.13	9.44					
RMSE		9.92	12.81	15.86	10.61	12.66					
BIAS	Sin Datos	5.90	4.99	11.72	2.89	7.00					
Skill		0.56	0.43	0.30	0.53	0.44					
R^2		0.66	0.61	0.53	0.74	0.79					

No do-B5-Test-11


Espectros
P5 P50 P95
Promedio
Envolvente


100
20
10
0 0.05
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Frecuencia [Hz]

Adecuada
representación de
la frecuencia
peak.
Tendencia a
subestimar la
energía entre los
0.1 y 0.2 Hz

VALIDACIÓN

CONCLUSIONES Y TRABAJOS FUTUROS

Relativo a la selección del dominio computacional y batimétrico

• El uso de batimetrías de distinta resolución (0.5° y 1°) y extensión, no produce un impacto significativo en los resultados de las simulaciones. Los tiempos de cálculo con mallas de 0.5° x 0.5° ascienden a 22.5 horas por año de simulación en comparación a las 2.2 horas por un escenario con malla 1°x 1°.

Relativo a la selección de parametrizaciones físicas

- El paquete de parametrizaciones del proceso de aporte y disipación de la energía debido al viento ST1 $(S_{in} \ y \ S_{ds})$, presenta el desempeño más bajo.
- La utilización de los switches asociados a la parametrización del proceso de aporte lineal de energía debido al viento (S_{ln}) LN1 o SEED, no produce un impacto significativo en los resultados de las simulaciones.
- Si bien, el método de estimación de transferencia de energía dentro del espectro de olas, debido a interacciones no lineales entre cuadrupletas (S_{nl}) , mediante el método GMD (Switch NL3), presenta mejoras en la parametrización del proceso físico, respecto al método DIA (Switch NL1), los mejores ajustes de los resultados del modelo con las mediciones fueron obtenidos tras la utilización de este último.
- El paquete de parametrizaciones de los términos S_{in} y S_{ds} ST4, es el que presenta un mejor desempeño en la representación del clima medio y extremo de oleaje frente a las costas de Chile.

CONCLUSIONES Y TRABAJOS FUTUROS

Relativo al ajuste de parámetros adimensionales de las parametrizaciones de los procesos físicos y a la selección de la base de datos de forzantes del modelo

- La modificación del límite de aporte de energía debido al viento ($Z_{0,max}$), no influye de manera significativa en los resultados de las simulaciones.
- En general, la modificación de los parámetros adimensionales no influye de manera significativa en los resultados de las variables T_m y D_m .
- La modificación del parámetro β_{max} , altera considerablemente los resultados del modelo. El aumento del valor de este parámetro l, repercute en un aumento de la altura H_{m0} . Se observó que el aumento de β_{max} , mejora el desempeño en la representación de alturas H_{m0} más energéticas (eventos extremos), sin afectar de forma significativa la representación de H_{m0} clasificadas como clima medio.
- Los escenarios de calibración forzados con ERA-Interim, tienden a subestimar las alturas H_{m0} en relación a los escenarios forzados con datos del reanálisis CFSR. Adicionalmente, se observó que los modelos forzados con datos ERA-Interim, tienden a presentar un mejor desempeño en la estimación del clima medio de oleaje, mientras que los escenarios forzados con datos CFSR, tienden a presentar un mejor desempeño para datos de clima extremo.
- El escenario que presentó un mejor desempeño global, en relación a los demás escenarios planteados, fue el Test-11 que corresponde al escenario definido en base a las recomendaciones expuestas en Ardhuin et al (2011).

CONCLUSIONES Y TRABAJOS FUTUROS

Trabajos futuros

- Aumentar la resolución del dominio computacional en las cercanías de la costa sudamericana empleando una técnica de anidamiento bidireccional.
- Aumentar el valor del parámetro β_{max} , de tal forma de mantener la calidad de los resultados del modelo en la representación del clima medio y aumentar en clima extremo.
- Sensibilizar otros coeficientes de las parametrizaciones físicas del paquete de términos fuentes ST4.
- Calibrar una base de datos especial para la representación del clima extremo.
- Evaluar la calidad de los vientos reanalizados respecto a mediciones. Posibilidad de asimilar información de viento para generar un mejor *Input* para el modelo Wavewatch III.

AGRADECIMIENTOS

Se agradece el financiamiento entregado por el programa Fondef-IDeA de CONICYT y al equipo del proyecto compuesto por la Dirección de Obras Portuarias, APuerto Ingeniería y la Universidad de Valparaíso a través de la Escuela de Ingeniería Civil Oceánica y el Centro de Investigación y Modelamiento de Fenómenos Aleatorios – Valparaíso, al Servicio Hidrográfico y Oceanográfico de la Armada y al Proyecto Corfo-INNOVA 09CN14-5718 "Catastro del recurso energético asociado a oleaje para el apoyo a la evaluación de proyectos de generación de energía undimotriz".

GRACIAS POR SU ATENCIÓN