

Evaluación de los parámetros de periodo y dirección que definen las tormentas extremas y comparación de métodos de estimación de cargas por oleaje en estructuras verticales en Chile. Caso de estudio tormenta julio 2013

Rodrigo Danilo Leal Cornejo

Contenidos

- Introducción
- Objetivos
- Descripción zona de estudio
- Metodología
- Resultados
- Conclusiones

Objetivos

Objetivo general

Evaluar las cargas de oleaje en estructuras verticales propuestas en la literatura y su sensibilidad al variar el periodo de oleaje y la dirección de incidencia, por dos métodos; a partir de funciones de transferencia y promedio de registros de tormentas, considerando como caso de aplicación las estructuras dañadas por la tormenta de julio de 2013.

Objetivos

Objetivo específicos

- Comprender las metodologías de evaluación de cargas de oleaje en estructuras verticales provenientes de publicaciones científicas, normas, estándares, recomendaciones y guías.
- Determinar la importancia de la metodología de selección del periodo y la dirección en la obtención de la altura de ola de diseño.
- Caracterizar la tormenta de julio de 2013 en términos de sus variables meteorológicas y oceanográficas.
- Determinar las condiciones de generación de la tormenta y su periodo de retorno asociado.

Descripción zona de estudio

El puerto de Antofagasta (23°39'1.15" S y 70°24'44" O) se encuentra dentro de la Bahía Moreno, al Sur del balneario de Juan López, entre la Punta Brava y Punta Coloso. La Bahía Moreno se encuentra orientada hacia el SW, por lo que estará expuesta mayormente al oleaje proveniente de esta dirección, y encuentra medianamente protegida de los eventos incidentes desde el NW y NNW.



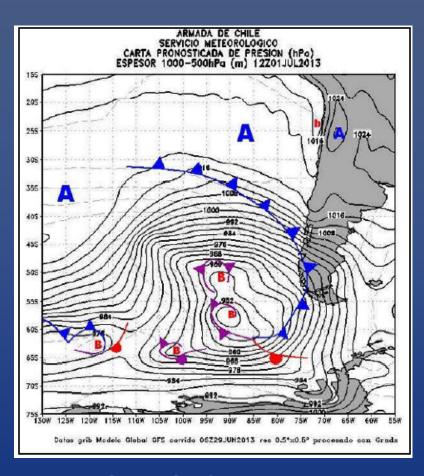
Estructura a analizar

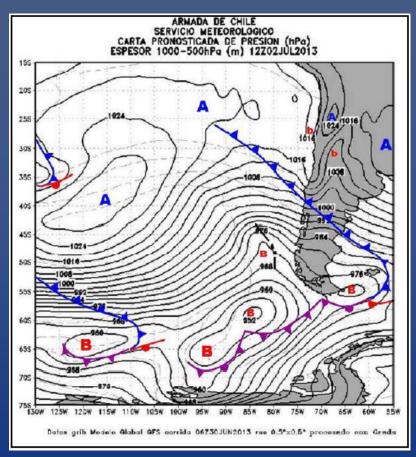
Metodología

Análisis de Valores Extremo

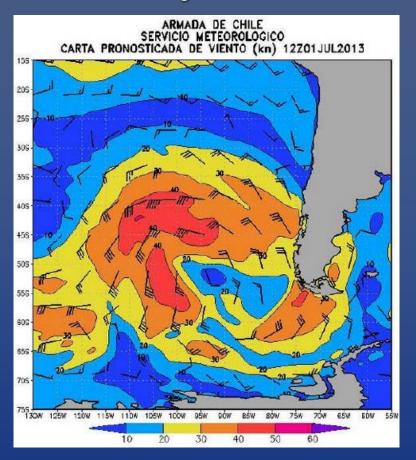
Para el análisis se contó con una selección de 30 mayores tormentas de aguas profundas de la base de datos de Olas Chile IV durante los años 1980 y 2006.

	Hm0 [m]	Tp [s]	Dpk [°]
1	5.19	15.39	234
2	4.6	15.52	233
3	4.5	15.45	227
4	4.3	15.21	230
5	4.24	15.66	227
6	4.12	17.08	214
7	4.12	18.4	230
8	4.1	16.09	234
9	4.07	15.75	225
10	4.06	17.08	216
11	4.05	14.21	230
12	4.04	15.4	223
13	4.04	15.95	227
14	4.03	15.61	213
15	4.02	17.1	213
16	4	15.83	221
17	3.95	15.55	225
18	3.89	17.14	218
19	3.87	14.99	226
20	3.87	15.96	216
21	3.86	15.87	210
22	3.76	14.19	223
23	3.76	17.23	212
24	3.75	18.29	218
25	3.75	14.46	236
26	3.73	15.86	226
27	3.72	18.22	222
28	3.72	16.88	223
29	3.7	15.16	229
30	3.7	15.89	231


Tr [años]	Hm0 límite inferior [m]	Hm0[m]	Hm0 límite superior [m]
2	3.77	3.90	4.03
5	3.93	4.19	4.44
10	4.05	4.42	4.80
20	4.17	4.67	5.17
25	4.21	4.75	5.30
50	4.33	5.01	5.70
100	4.46	5.29	6.11


Ajuste Weibull con K=0.85 e intervalo de confianza del 90%.

Análisis tormenta julio 2013



Carta Sinóptica 01 y 02 de julio de 2013, respectivamente Fuente: Servicio Meteorológico de la Armada.

Tormenta julio 2013

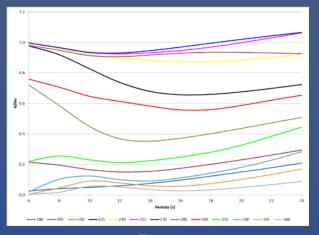
Carta de viento 01 y 02 de julio de 2013, respectivamente Fuente: Servicio Meteorológico de la Armada.

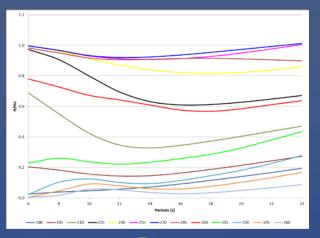
Análisis tormenta julio 2013

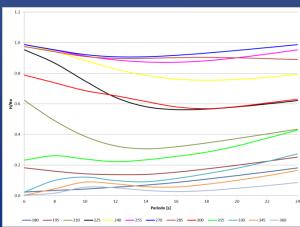
Valores máximos de tormenta en aguas profundas

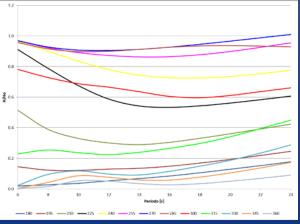
Nodo	Inicio	Término	Duración [Hrs]	Hm0 [m]	Tp [s]	Dpk [°]
Antofagasta	04/07/2013 0:00	04/07/2013 21:00	21	4.71	17.29	230

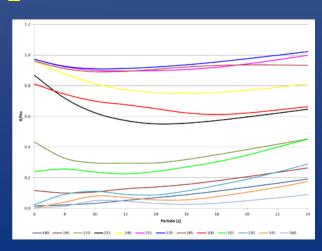
Análisis Funciones de Transferencia


Se analizaron funciones de transferencia proporcionadas por Baird & Associates en puntos cercanos al Puerto de Antofagasta.



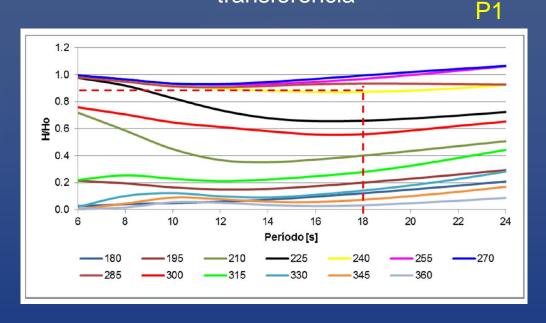



Análisis Funciones de Transferencia



P1

15



Obtención de parámetros de periodo y dirección

Caso A: valores promedio del listado de tormentas

1 5.19 15.39 234 2 4.6 15.52 233 3 4.5 15.45 227 4 4.3 15.21 230 5 4.24 15.66 227 6 4.12 17.08 214 7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96				
2 4.6 15.52 233 3 4.5 15.45 227 4 4.3 15.21 230 5 4.24 15.66 227 6 4.12 17.08 214 7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.8				Dpk [°]
3 4.5 15.45 227 4 4.3 15.21 230 5 4.24 15.66 227 6 4.12 17.08 214 7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14		5.19	15.39	
4 4.3 15.21 230 5 4.24 15.66 227 6 4.12 17.08 214 7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76	2	4.6	15.52	
5 4.24 15.66 227 6 4.12 17.08 214 7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 <t< td=""><td>3</td><td>4.5</td><td></td><td>227</td></t<>	3	4.5		227
6 4.12 17.08 214 7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 <		4.3	15.21	
7 4.12 18.4 230 8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73		4.24	15.66	227
8 4.1 16.09 234 9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72		4.12	17.08	214
9 4.07 15.75 225 10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	7	4.12	18.4	230
10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	8	4.1	16.09	234
10 4.06 17.08 216 11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	9	4.07	15.75	225
11 4.05 14.21 230 12 4.04 15.4 223 13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	10	4.06	17.08	
13 4.04 15.95 227 14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222		4.05	14.21	
14 4.03 15.61 213 15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	12	4.04	15.4	223
15 4.02 17.1 213 16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	13	4.04	15.95	227
16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	14	4.03	15.61	213
16 4 15.83 221 17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	15	4.02	17.1	213
17 3.95 15.55 225 18 3.89 17.14 218 19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222		4	15.83	221
19 3.87 14.99 226 20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	17	3.95	15.55	
20 3.87 15.96 216 21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	18	3.89	17.14	218
21 3.86 15.87 210 22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	19	3.87	14.99	226
22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	20	3.87	15.96	216
22 3.76 14.19 223 23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	21	3.86	15.87	210
23 3.76 17.23 212 24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	22	3.76	14.19	
24 3.75 18.29 218 25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	23	3.76	17.23	
25 3.75 14.46 236 26 3.73 15.86 226 27 3.72 18.22 222	24	3.75	18.29	
26 3.73 15.86 226 27 3.72 18.22 222		3.75	14.46	
27 3.72 18.22 222	26		15.86	226
	27	3.72	18.22	
28 3.72 16.88 223	28	3.72	16.88	223
29 3.7 15.16 229		3.7	15.16	229
30 3.7 15.89 231		3.7	15.89	231

Caso B: Análisis funciones de transferencia

<u>Caso A</u> <u>Caso B</u> Tp=16s Tp=18s Dpk=224° Dpk=240°

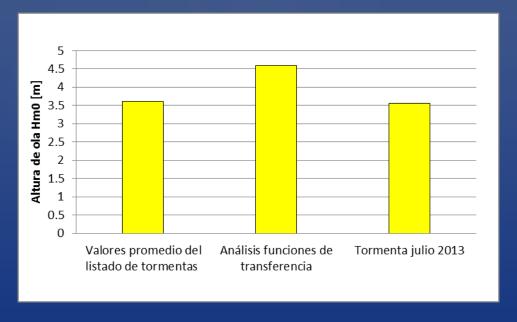
Obtención de casos para evaluación de cargas

Tr [años]	Hm0 límite inferior [m]	Hm0[m]	Hm0 límite superior [m]
2	3.77	3.90	4.03
5	3.93	4.19	4.44
10	4.05	4.42	4.80
20	4.17	4.67	5.17
25	4.21	4.75	5.30
50	4.33	5.01	5.70
100	4.46	5.29	6.11

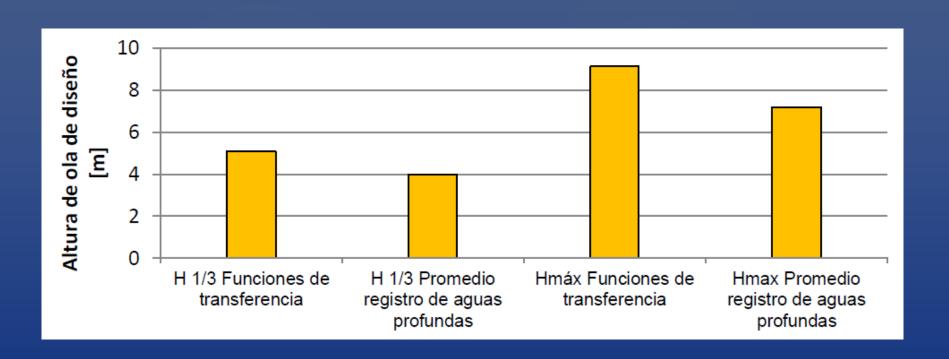
Tormenta julio 2013			
Fecha Hm0 [m]			
04/07/2013 9:00	4.71		

Obtención de casos para evaluación de cargas

Caso	Hm0 [m]	Tp [s]	Dpk [°]
Valores promedio del listado de tormentas	5.3	16	224
Análisis funciones de transferencia	5.3	18	240
Tormenta julio 2013	4.7	17.3	230

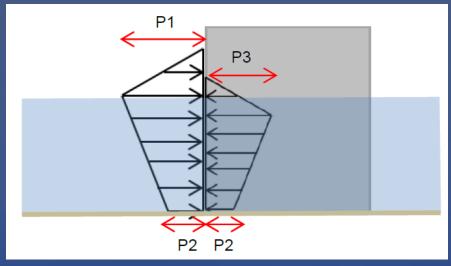

Resultados

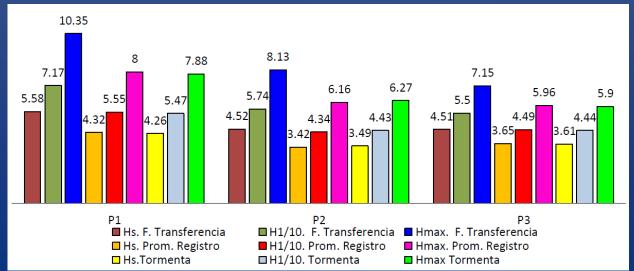
Altura de ola puntos de extracción


Caso	Hm0 [m]	Tp [s]	Dpk [°]
Valores promedio del listado de tormentas	3.62	16	243
Análisis funciones de transferencia	4.6	18	253
Tormenta julio 2013	3.56	17.3	247

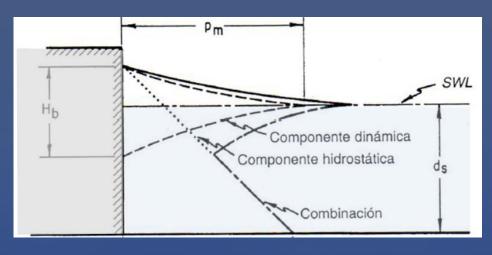
Altura de Ola de Diseño Pie de la obra

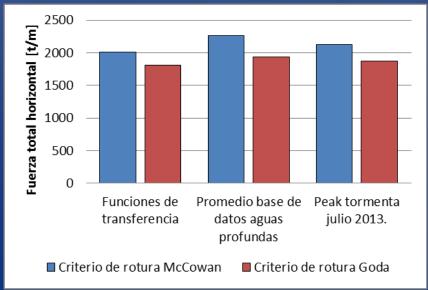
Condiciones de evaluación de cargas


 Las cargas se analizaron considerando las metodologías propuestas por Sainflou (1928), Minikin (1963) y Goda extendido (1994). Además, se analizó la tormenta de julio de 2013.

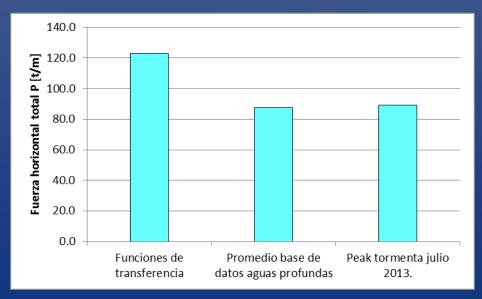

Caso	Hm0 [m]	H1/10 [m]	Hmax [m]	Tp [s]	Marea [m NRS]
Valores promedio del listado de tormentas	3.98	5.05	7.17	16	1.3
Análisis funciones de transferencia	5.06	6.43	9.11	18	1.3
Tormenta julio 2013	3.56	-	-	17.3	1.3

Sainflou (1928)





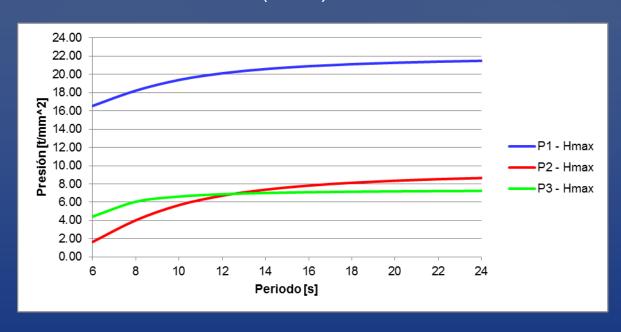
Minikin (1963)



Goda extendido (1994)

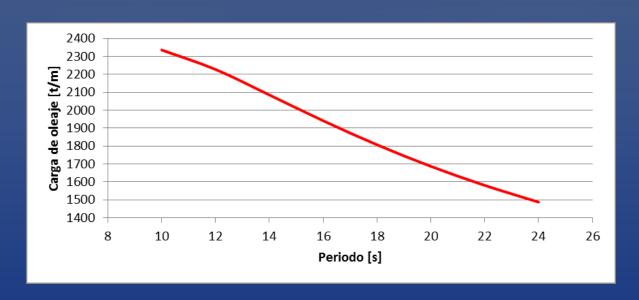
Análisis de estabilidad

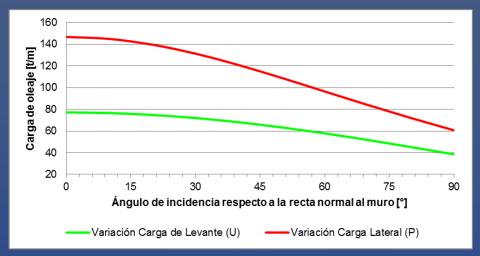
RO	ROM		Goda		DOP	
Deslizamiento	Vuelco	Deslizamiento	Vuelco	Deslizamiento	Vuelco	
1.2	1.2	1.2	1.2	1.4	1.2	


Factor	Promedio registro de aguas profundas	Análisis funciones de transferencia	Peak tormenta julio 2013
Factor de seguridad deslizamiento	2.2	1.5	2.1
Factor de seguridad vuelco	4.37	2.87	4.28

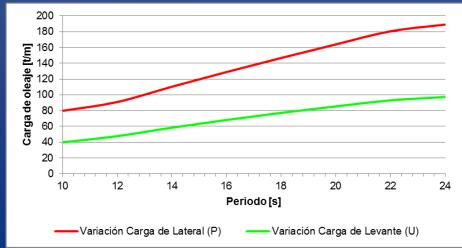
Análisis de sensibilidad

Variación de la presión en función del periodo (Hmax). Formulación Sainflou (1928).




Análisis de sensibilidad

Variación de la carga total horizontal en función del periodo Método de Minikin (1963).



Variación de la carga horizontal (P) y levante (U) en función del ángulo de incidencia. Formulación Goda

Variación de la carga horizontal (P) y levante (U) en función del ángulo de incidencia. Formulación Goda

Formulaciones en la literatura

Literatura / País	Formulación pro	puesta
Coastal Engineering Manual (2006) / Estados Unidos	Goda extendido (1994)	Sainflou (1928)
British Standard Institute (2000) / Inglaterra	Goda extendido (1994)	
Technical Standards and Commentaries for Port and Harbour Facilties in Japan (2002) / Japón	Goda extendido (1994)	
Guía de Disño, Construcción, Operación y Conservación de Obras Marítimas Costeras (2012) / Chile	Goda extendido (1994)	Sainflou (1928)
Permanent International Association of Navigation Congres, PIANC (Report of Working Group 28, 2003)	Goda extendido (1994)	

Sobre la base del análisis de clima extremo realizado, se verificó que la tormenta ocurrida entre los días 3 y 7 de julio de 2013, no superó una altura de ola asociada a un periodo de retorno de Tr= 100 años, considerando una base de datos de 30 años de extensión para este caso particular.

Caso	Hm0 [m]	Tp [s]	Dpk [°]
Valores promedio del listado de tormentas	5.3	16	224
Análisis funciones de transferencia	5.3	18	240
Tormenta julio 2013	4.7	17.3	230

Tr [años]	Hm0 límite inferior [m]	Hm0[m]	Hm0 límite superior [m]
2	3.77	3.90	4.03
5	3.93	4.19	4.44
10	4.05	4.42	4.80
20	4.17	4.67	5.17
25	4.21	4.75	5.30
50	4.33	5.01	5.70
100	4.46	5.29	6.11

- Las diferencias en cargas obtenidas al considerar distintos escenarios de selección de periodo y dirección reflejan la importancia de estos parámetros, ya que no sólo controlarán el dimensionamiento de una obra, sino que también controlarán: factores de seguridad, cotas de coronación de muelles para evitar slamming, cotas de coronación en muros verticales y rompeolas en talud para evitar sobrepaso.
 - Contar con información de oleaje sólida, ya sea de pronóstico o de reanálisis.
 - Poner atención a las características de los periodos, en especial a los largos.

- Considerando la importancia de los parámetros de periodo y dirección y de acuerdo a los resultados de este análisis para los diseños se recomienda:
 - Seleccionar los parámetros de periodo y dirección a partir de las funciones de transferencia, de acuerdo al riesgo asumido.
 - Identificar las características de la zona de estudio.
 - Verificar la existencia de los parámetros dentro de la data de aguas profundas.
 - Conocer los criterios e índices de rotura, ya que es fundamental para los diseños de obras marítimas, dado que será un primer indicador de las posibles presiones y solicitaciones del tipo impulsivas generadas sobre la estructura.