

Metodología para determinar el ancho de la Zona de Protección Litoral (ZPL)

Trabajo para optar al título de Ingeniero Civil Oceánico

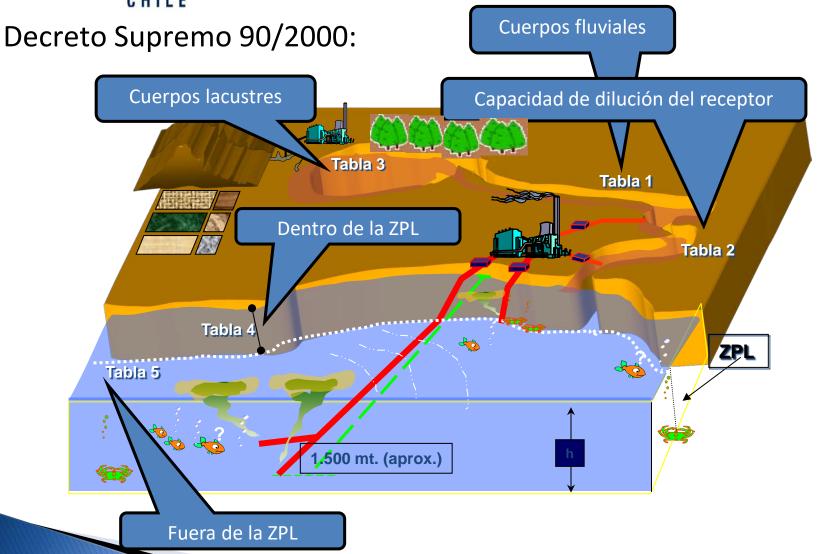
Alumno Memorista : Marco Gallegos Jeria

Profesor guía : Felipe Caselli Benavente

Estructura de la presentación NGENIERÍA CIVIL OCEÁNICA

Introducción	
Objetivos	
Metodología	
Resultados	
Conclusiones	
Sugerencias	

¿Por qué plantear una metodología de cálculo?


Al revisar el método actual de cálculo, se concluyó la posibilidad de plantear una metodología capaz de incluir criterios de decisión y elementos de cálculo previstos en normas técnicas y legales, los que permiten fundamentar su aplicación y resultados.

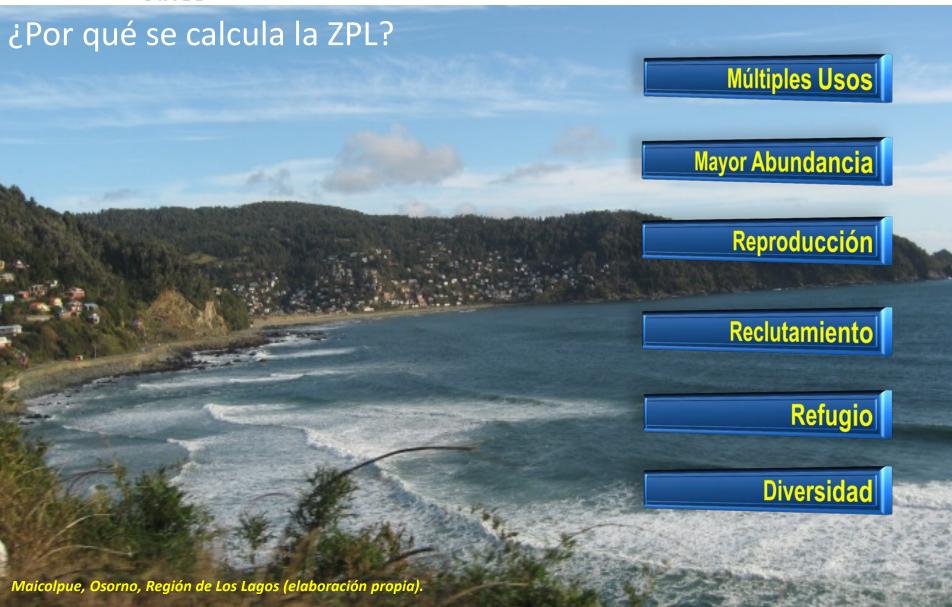
¿La actual metodología no es útil?

La actual metodología es útil, considerando que es parte de la norma vigente, sin embargo los resultados aquí expuestos están sustentados en sendos estudios citados y utilizados en el texto final del trabajo de título.

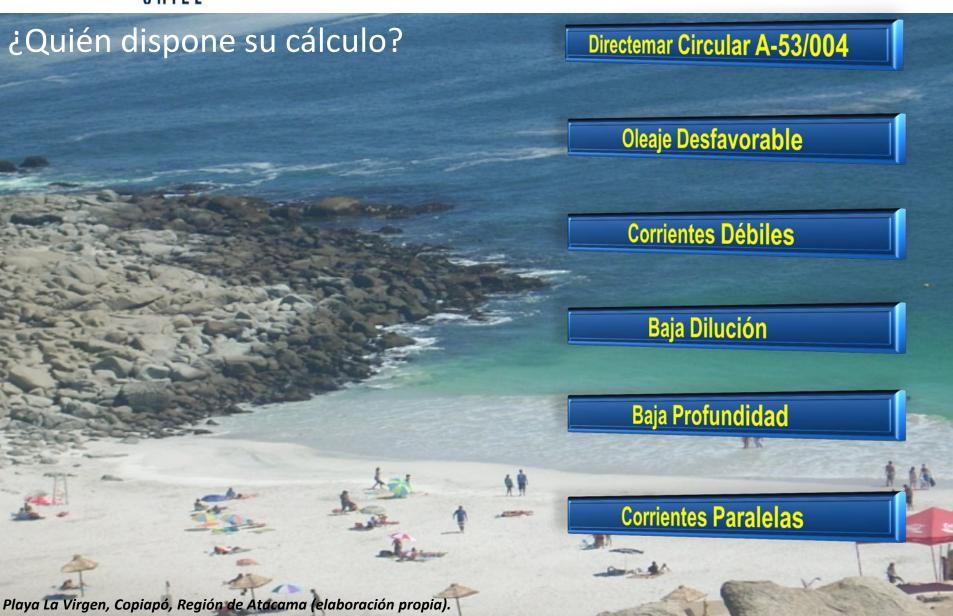


Habrá una Zona de Protección Litoral (en adelante ZPL), en todo el territorio de la República de Chile, definida como :

..."un ámbito territorial que corresponde a la franja de playa, agua y fondo de mar adyacente a la costa continental o insular, delimitada por una línea superficial imaginaria, medida desde la línea de baja marea de sicigia, que se orienta paralela a esta y que se proyecta hasta el fondo del cuerpo de agua, **fijada** por la Dirección General del Territorio Marítimo y de Marina Mercante en conformidad a "...


(D.S. $N^{\circ}90$ del 30 de mayo del 2000, publicado en el D.O. del 7 de marzo del 2001)

Página <u>www.directemar.cl</u>, extraído el 19 de octubre de 2016.



Estructura de la presentación NGENERÍA CIVIL

Introducción	
Objetivos	
Metodología	
Resultados	
Conclusiones	
Sugerencias	

Objetivos

OBJETIVO GENERAL:

Desarrollar una metodología de cálculo, para establecer una ZPL apropiada a las características propias del sector correspondiente, complementando la actual metodología.

14/08/2011 17:29

Objetivos

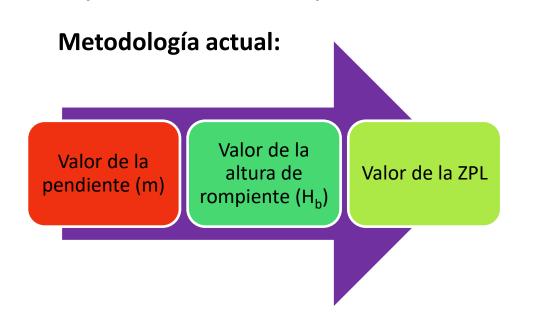
OBJETIVOS ESPECIFICOS:

- Establecer un criterio para definir el uso del borde costero y asociarlo a la variable de oleaje para el cálculo de la ZPL.
- Comparar el cálculo de la ZPL entre lo dispuesto por Directemar y lo propuesto por la metodología.
- Definir un método para el cálculo de la ola de rompiente (H_b) en zonas expuestas.
- Analizar cuáles son las fortalezas y debilidades de la metodología planteada respecto a lo que está actualmente en uso.

Objetivos

Fuera del alcance de esta metodología están las áreas con Fetch local y aguas interiores.

Estructura de la presentación NGENIERÍA CIVIL

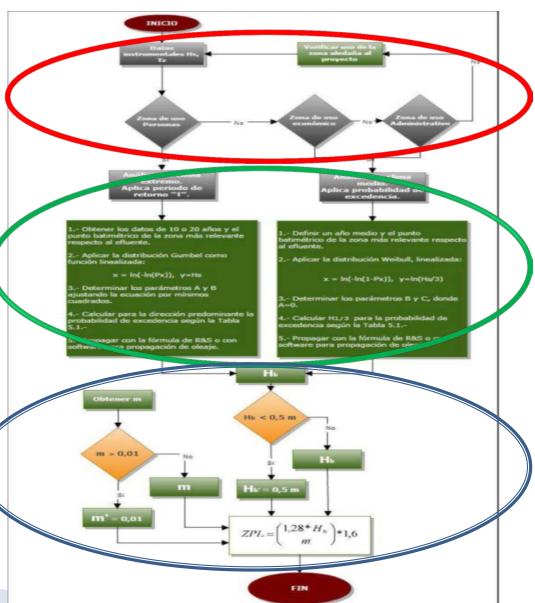


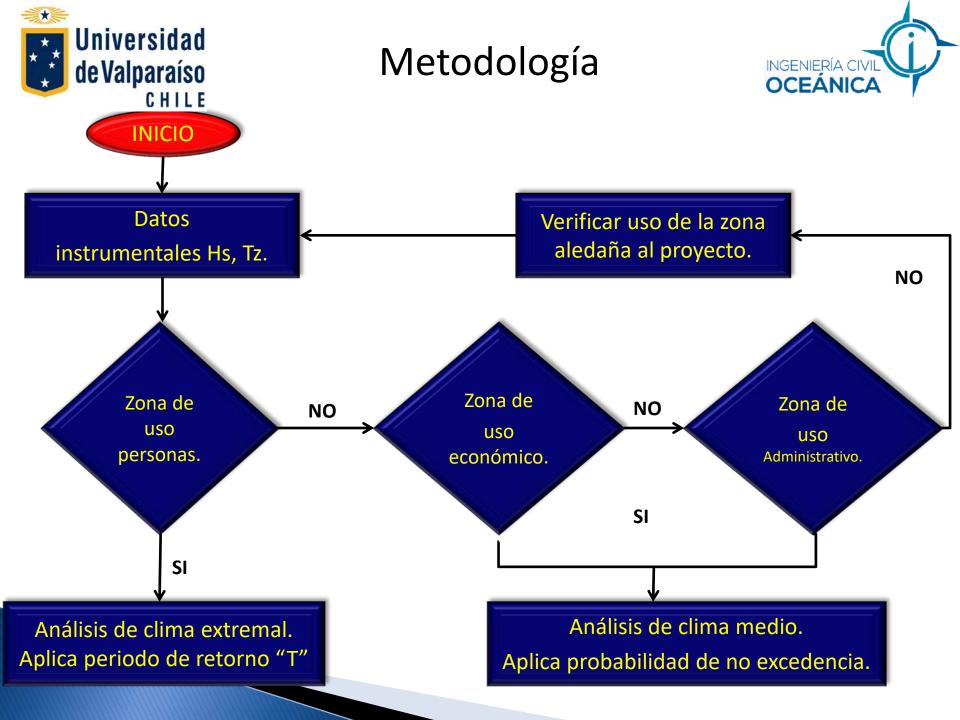
Introducción	
Objetivos	
Metodología	
Resultados	
Conclusiones	
Sugerencias	

Desarrollar una metodología de cálculo, para establecer una ZPL apropiada a las características propias del sector correspondiente, complementando la actual metodología.

Metodología propuesta:

Aplica criterios de uso del sector adyacente a la ZPL y elementos técnicos para el cálculo de H_b.





Criterio de uso

Criterio de cálculo

Criterio de parámetros

Establecer un criterio para definir el uso del borde costero y asociarlo a la variable de oleaje para el cálculo de la ZPL.

Ver: Decreto 295

Centro Nacional de Áreas Protegidas 2006 (Mar Cuba 2006)

Indicador : Actividades del sector.

Umbral de ocupación: Porcentaje de uso.

Factor de aplicación : Periodo de retorno o no excedencia.

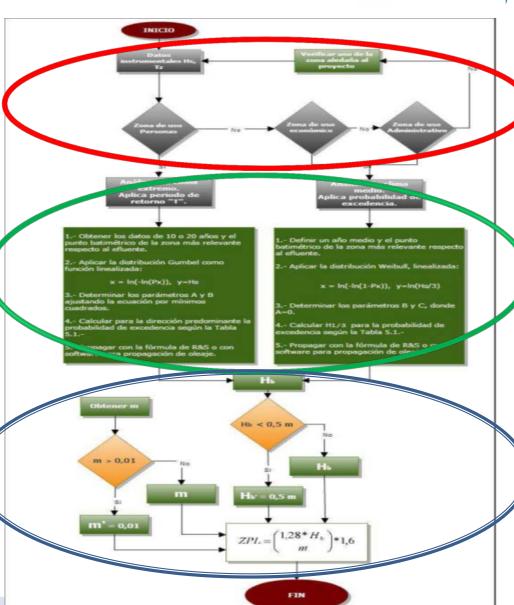
Fundamento : Herramienta de análisis.

Playa Varadero, Cuba (elaboración propia).

Indicadores	Umbral de ocupación	Factor de aplicación	Fundamento
	Zona de uso	Personas	
Zona de baño (con máxima capacidad de carga de la playa) y conservación ecológica.	Menor a 95% y mayor o igual que 80% de ocupación. Declarada por la AM como zona de conservación o zona protegida.	Período de retorno 100 años	Se aplica el análisis de clima extrema
Zona de deportes náuticos y plantas desalinizadoras.	Menor que 80% y mayor o igual que 70% de ocupación.	Series 52 27 25 25	buscando una ola de mayor altura, con un periodo de retorno determinado.
Zona de actividades recreativas y de bajo uso para el baño (Corresponde a la mínima capacidad de carga de la playa).		Periodo de retorno 20 años	

Indicadores	Umbral de ocupación	Factor de aplicación	Fundamento
	Zona de recursos	económicos	
Zona de pesca artesanal	zona aledaña al proyecto	Probabilidad de no excedencia 80%	
Zona de pesca deportiva.	Declarada por la Autoridad competente.		Se aplica el análisis de clima medio.
Zona Turística o Histórica	A lo menos una zona turística o histórica colindante al provecto	Probabilidad de no excedencia de 75%	

Indicadores	Umbral de ocupación	Factor de aplicación	Fundamento		
	Zona de recursos A	dministrativos			
Zona de fondeo de embarcaciones	Delimitado por la autoridad marítima				
Zona de refugio	Indicado en el estudio de maniobra del sector	Probabilidad de no excedencia de	Se aplica el análisis		
Zona de tráfico marítimo	Indicado en el estudio de maniobra del sector	65%	de clima medio.		
Zona Industrial	Zona indicada en el plano regulador de la ciudad.				

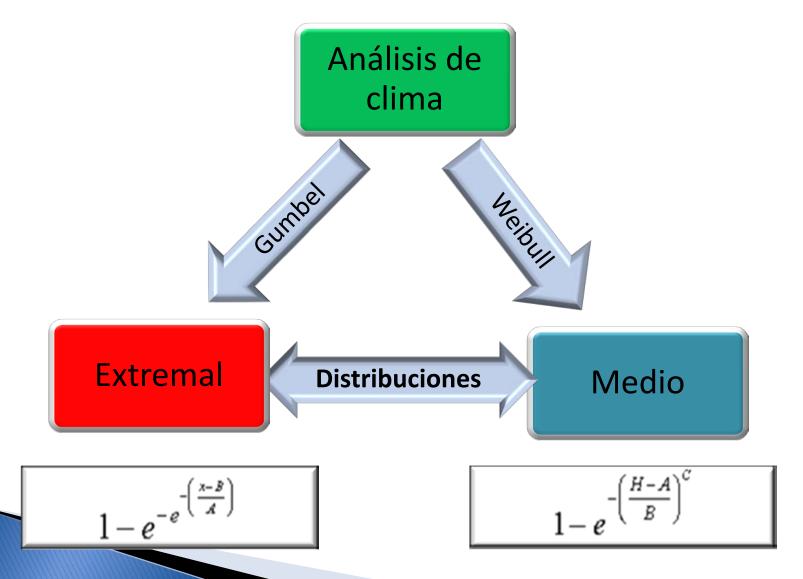


Criterio de uso

Criterio de cálculo

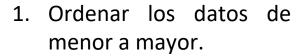
Criterio de parámetros

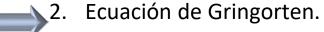
Clima extremal, Aplica periodo de retorno "T".


- 1.- Datos de oleaje de 10 o 20 años y punto batimétrico.
- 2.- Tabular los datos.
- 3.- Aplicar la distribución Gumbel, determinando los parámetros "A" y "B" para cada dirección de oleaje.
- 4.- Propagar el oleaje con la fórmula de R&S.
- 5.- Seleccionar el mayor valor.

Clima medio,
Aplica probabilidad de no excedencia.

- 1.- Datos de oleaje de un año medio y punto batimétrico.
- 2.- Tabular los datos.
- 3.- Aplicar la distribución Weibull, determinando los parámetros "B" y "C" para cada dirección de oleaje.
- 4.- Propagar el oleaje con la fórmula de R&S.
- 5.- Seleccionar el mayor valor.

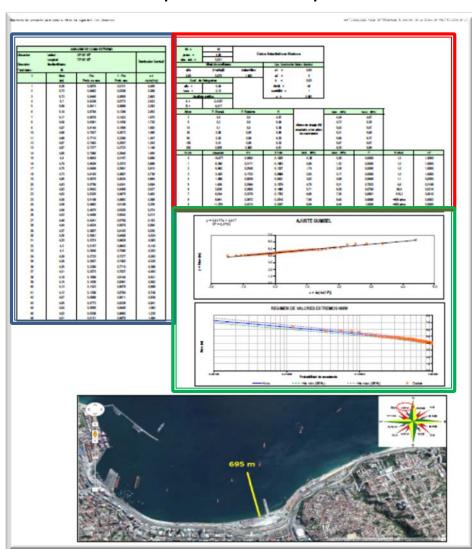

Métodos


Gráfico:

Punto; m

Numérico:

Ajuste de la recta


3. Se obtienen los valores para "x" y finalmente se gráfica.

Ejemplo de hoja de trabajo con distribución de Gumbel aplicada en Valparaíso.

Eje "y"

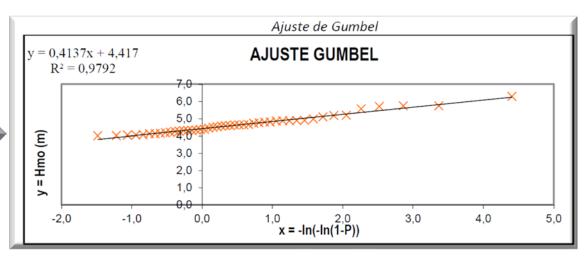
- Oleaje.
- Ordenado.

Gringorten

- Probabilidad por dato.
- Disminuye el sesgo.

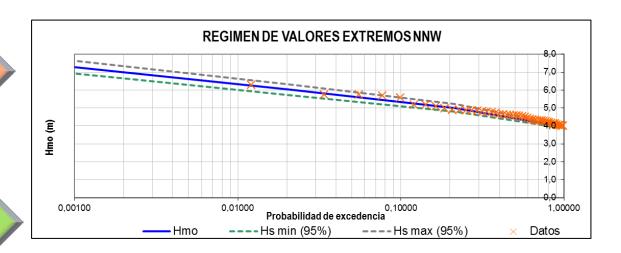
Eje "x"

- Función
 Gumbel.
- Aplicada en Gringorten.


	Ajuste de Gumbel								
N° de orden "i"	Hmo	$Fm = 1 - \frac{(i - \alpha)}{(N_t + \beta)}$	1 – Fm	$x = -\ln(-\ln(Fm))$					
1	6,28	0,9879	0,0121	4,405					
2	5,73	0,9662	0,0338	3,369					
3	5,73	0,9445	0,0555	2,863					
4	5,70	0,9228	0,0772	2,522					
5	5,56	0,9011	0,0989	2,262					
6	5,19	0,8794	0,1206	2,052					
7	5,17	0,8578	0,1422	1,875					
8	5,09	0,8361	0,1639	1,720					
9	4,97	0,8144	0,1856	1,583					
46	4,01	0,0121	0,9879	-1,484					

Ajuste

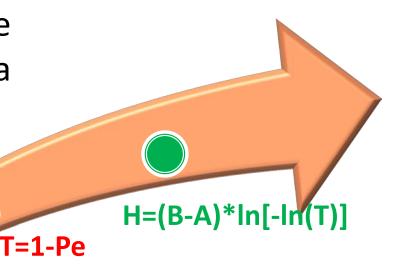
- Datos numéricos.
- $\bullet R^2$.



Gráfico

- Bandas de confianza.
- Valores normales.

Gráfico


 Respuesta media del oleaje aceptable.

Distribución de Gumbel aplicada en Valparaíso:

Pe=1/años

	Altura de ola								
Años	Probabilidad de excedencia	Periodo de retorno	H s						
2	0,5	0,5	4,57						
5	0,2	0,8	5,04						
10	0,1	0,9	5,35						
20	0,05	0,95	5,65						
50	0,02	0,98	6,03						
100	0,01	0,99	6,32						
200	0,005	0,995	6,61						

Gráfico:

Punto; m

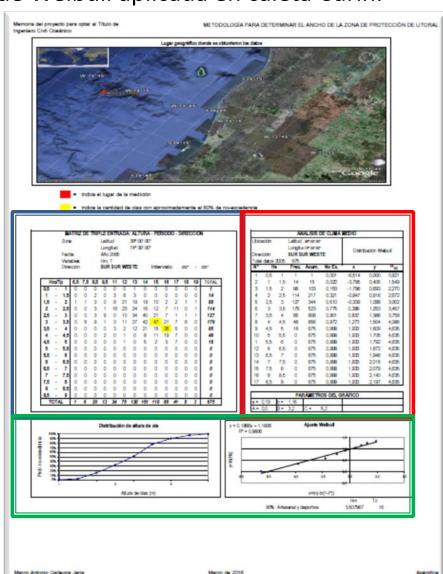
Métodos

Numérico:

Ajuste de la recta

- 1. Matriz de triple entrada.
- 2. Ordenar de menor a mayor oleaje.
- 3. Se obtienen los valores de "x" e "y".
- 4. Se grafica.

Ejemplo de hoja de trabajo con distribución de Weibull aplicada en caleta Curin.


Oleaje, dirección.
Matriz triple entrada.

Cálculos

- Estadígrafos.
- Probabilidades.
- Valores de "x" e "y".

Gráficos

- Ajuste.
- Probabilidad de no excedencia.

Matriz

- Altura.
- Período.
- Dirección.

Muestra

- Marcas de clase.
- Totales acumulados.

Datos

- 2.920 datos.
- 107 del WNW.

MATRIZ DE TRIPLE ENTRADA: ALTURA - PERIODO - DIRECCION

Zona : Latitud 39°:00':00"

Longitud 74º:30':00"

Fecha : Año 2005 Variables : Hm, T

Dirección : WESTE NORWESTE Intervalo: 294° - 317°

Γ	Н	m/T	р	6,5	7,5	8,5	9,5	11	12	13	14	15	16	17	18	19	TOTAL	1
0),5	-	1	0	0	0	0	0	0	0	0	0	2	0	0	0	2	
	1	-	1,5	0	0	0	0	0	0	0	0	0	1	0	0	0	1	
1	,5	-	2	0	0	0	3	0	0	1	0	0	0	0	0	0	4	
:	2	-	2,5	0	0	0	1	6	2	0	0	3	0	2	0	0	14	
2	2,5	-	3	0	0	2	6	11	1	1	1	0	0	0	0	0	22	
;	3	-	3,5	0	2	0	7	9	2	2	2	3	0	0	0	0	27	
3	3,5	-	4	0	0	0	2	3	3	5	0	1	0	0	0	0	14	
	4	-	4,5	0	0	0	1	0	0	3	1	0	1	0	0	0	6	
4	1,5	-	5	0	0	0	3	2	0	1	2	0	2	0	0	0	10	
	5	-	5,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
5	5,5	-	6	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
Ш	6	-	6,5	0	0	0	0	2	1	0	0	0	0	0	0	0	3	
6	i,5	-	7	0	0	0	0	0	1	0	0	0	0	0	0	0	1	
	7	-	7,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7	,5	-	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8	-	8,5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
8	3,5	-	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	T	OTA	L	0	2	2	23	33	10	16	6	7	6	2	0	0	107	

Tipo

- Ubicación.
- Total datos.
- Dirección.

Tabla

- Marcas de clase.
- Totales acumulados.

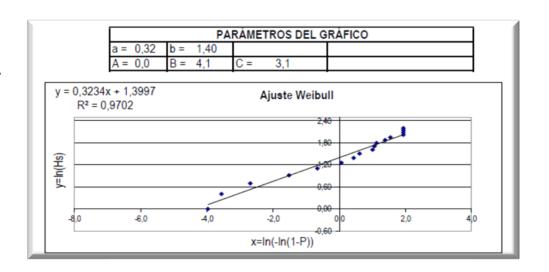
Valores

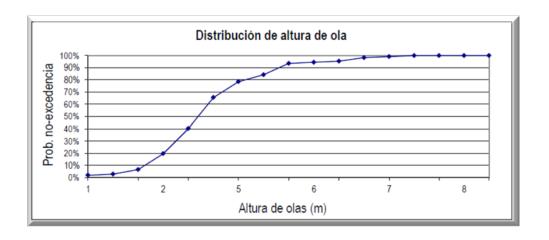
- 2.920 datos.
- 107 del WNW.

$$x = \ln\left(-\ln\left(1 - P\right)\right)$$
 $y = \ln\left(\frac{H}{3}\right)$

			AN	E CLIMA N	IEDIO			
Ubic	ación:		Latitud :					
			Longitud:		Distrib	: 4 18/-	L	
Direc	cción:		WESTE	NORWES	TE	DISTRIC	oución We	ibuli
	datos		107	15.000.00	1.7.			
Ν°	Н		Frec.	Acum.	No Ex.	X	У	П _{1/3}
1	0,5	1	2	2	0,019	-3,970	0,000	1,138
2	1	1,5	1	3	0,028	-3,560	0,405	1,298
3	1,5	2	4	7	0,065	-2,693	0,693	1,712
4	2	2,5	14	21	0,196	-1,521	0,916	2,492
5	2,5	3	22	43	0,402	-0,666	1,099	3,276
6	3	3,5	27	70	0,654	0,060	1,253	4,133
7	3,5	4	14	84	0,785	0,430	1,386	4,652
8	4	4,5	6	90	0,841	0,610	1,504	4,927
9	4,5	5	10	100	0,935	1,003	1,609	5,589
10	5	5.5	1	101	0,944	1,058	1,705	5,688
1	5,5	6	1	102	0,953	1,120	1,792	5,801
12	6	6,5	3	105	0,981	1,381	1,872	6,307
13	6,5	7	1	106	0,991	1,542	1,946	6,640
14	7	7,5	0	106	0,999	1,933	2,015	7,524
15	7,5	8	0	106	0,999	1,933	2,079	7,524
16	8	8,5	1	107	0,999	1,933	2,140	7,524
17	8,5	9	0	107	0,999	1,933	2,197	7,524

Parámetros

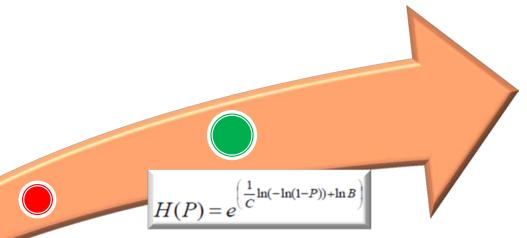

- a= 1/C
- b= ln*B


Gráfico

- Ecuación de la recta.
- R².

Gráfico

 Probabilidad de no excedencia.



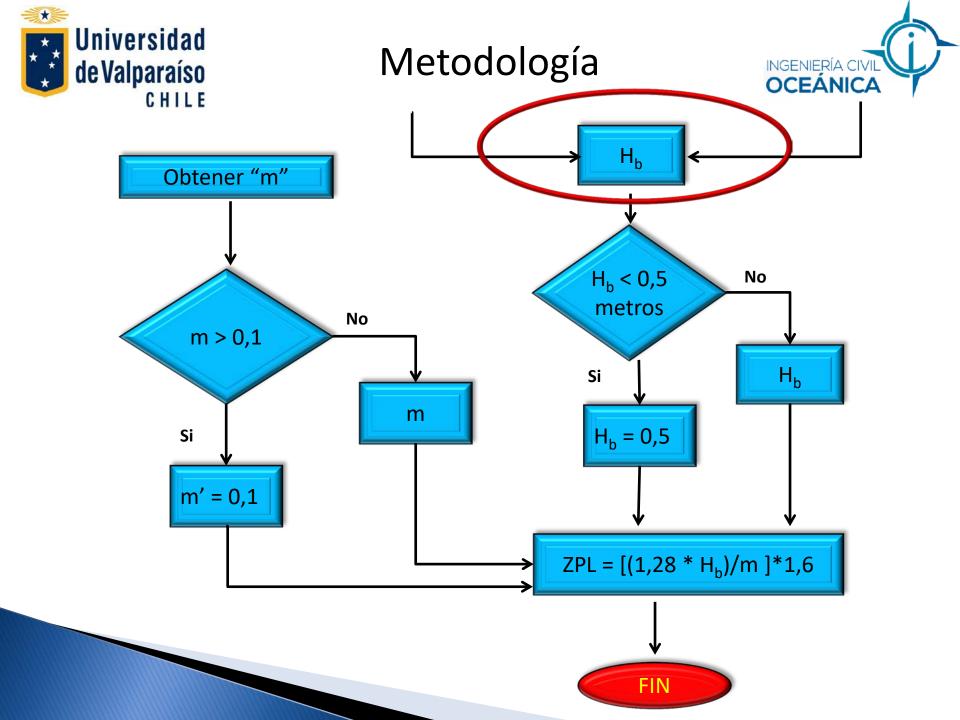
Distribución de Weibull aplicada en caleta Curin:

1-Pe =80%

Zona Económica

 $H_s = e^{(1/C)*ln[-ln(1-80\%)]+lnB} = 4,72 \text{ metros.}$





Criterio de uso

Criterio de cálculo

Criterio de parámetros

➤ Definir un método para el cálculo de la ola de rompiente (H_b) en zonas expuestas.

Para el caso de esta metodología, se utilizará la fórmula de Rattanapitikon y Shibayama para la propagación del oleaje, de aguas profundas hacia aguas someras.

$$H_b = (10,02m^3 - 7,46m^2 + 1,32m + 0,55)H_0 \left(\frac{H_0}{L_0}\right)^{-1/5}$$

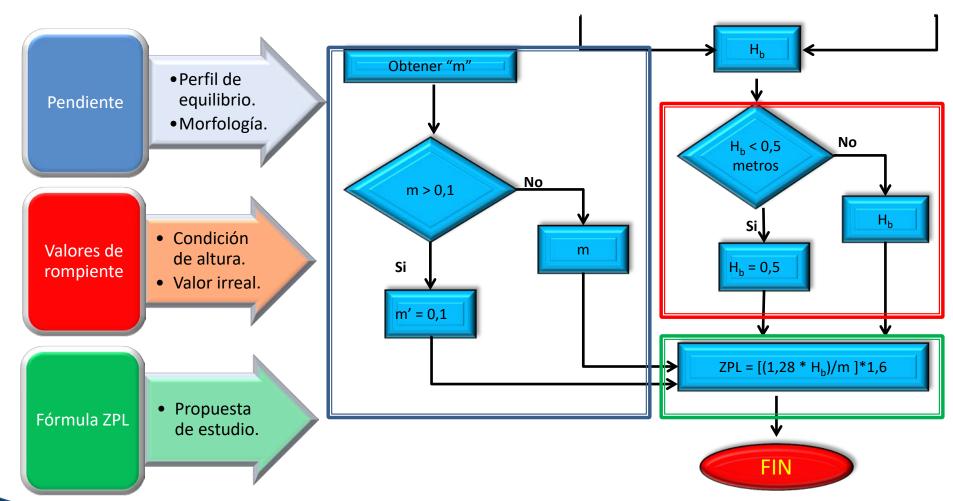
La fórmula de R&S fue concluida luego de analizar 24 fórmulas en 574 casos, considerando: $0 < m \le 0.07$.

Las fórmulas detalladas mas abajo, son la base de los estudios de R&S.

$$H_b = 0.56H_0 \left(\frac{H_0}{L_0}\right)^{-1/5}$$

Batimetría y oleaje de aguas profundas

$$H_b = 0.14L_b \tanh\left(\left(0.8 + 5(0.1)\right)\frac{2\pi h_b}{L_b}\right) m < 0.1$$


Parámetros locales de onda

$$H_b = 0.17L_0 \left\langle 1 - \exp\left[-1.5\frac{\pi h_b}{L_0} \left(1 + 15m^{4/3}\right)\right]\right\rangle$$

Batimetría y oleaje de aguas profundas

Estructura de la presentación NGENERÍA CIVIL

Introducción	
Objetivos	
Metodología	
Resultados	
Conclusiones	
Sugerencias	

Resultados

REGIMEN EXTREMAL DE OLEAJE (Gumbel)

Propuesto por el usuario marítimo (Valparaíso):

Detalle	Hs
Promedio del período	2,72
Promedio de los máximos registrados en el periodo	4,52
Promedio período estival	2,52
Promedio período invernal	2,8
Promedio de los máximos para el período estival	4,17
Promedio de los máximos para el período invernal	4,53

Punto	Pendiente (m)	Profundidad (m)	Distancia de la costa (m)
1	0,06	5	90
2	0,06	10	156
3	0,06	15	240

 $H_h=1,27 \text{ m}$; m=0,06; ZPL : 43 metros

Utilizando la metodología propuesta: 74,6 metros

USO DE PERSONAS					
T _z 8		9	14	15	
Lo	99,87	126,40	305,86	351,11	
NNW	74,60	71,17	59,64	58,02	
WNW	58,48	55,79	46,75	45,48	
WSW	61,88	59,03	49,47	48,12	
SW	62,02	59,17	49,58	48,23	
SSW	63,59	60,67	50,84	49,45	

Resultados

REGIMEN MEDIO DE OLEAJE (Weibull)

Propuesto por el usuario marítimo (Caleta Curín):

Detalle	Hs
Promedio del período	2,95
Promedio de los máximos en el periodo	3,83
Promedio período estival	2,61
Promedio período invernal	2,98
Promedio de los máximos para el período estival	3,14
Promedio de los máximos para el período invernal	3,80

	Punto	Pendiente	Profundidad (m)	Distancia a la costa (m)
l	1	0,07	5	72
l	2	0,07	10	144
l	3	0,07	15	215

 $H_h=1,002 \text{ m}; m=0,07; ZPL: 29 \text{ metros}$

Utilizando la metodología propuesta: 36,54 metros

Uso recreacional y económico							
Pendiente "m"	Dirección	Tz	Lo	Valor Tabla	Hs	Hb	ZPL
	SSW	16	399,49	0,8	3,51	0,83	24,26
	SW	15	351,11	0,8	4,02	1,00	29,27
0,070	WSW	14	305,86	0,8	4,47	1,17	34,26
	W	15	305,86	0,8	4,60	1,21	35,42
	WNW	9	305,86	0,8	4,72	1,25	36,54

Estructura de la presentación NGENIERÍA CIVIL OCEÁNICA

Introducción	
Objetivos	
Metodología	
Resultados	
Conclusiones	
Sugerencias	

Conclusiones

DEBILIDADES (CORREGIR)

Analizar más detalladamente la pendiente "m", que incide de manera significativa dentro del objetivo principal de la ZPL.

AMENZAS (AFRONTAR)

Proyecto sin financiamiento, lo que no permite hacer un trabajo de campo, que es base para establecer si la metodología puede ser contrastada y adaptarla a la realidad nacional.

FODA

FORTALEZAS (MANTENER)

El uso de métodos aceptados y vigentes por la comunidad marítima en materia de la ingeniería y el medio ambiente.

OPORTUNIDADES (EXPLOTAR)

Material de apoyo para los estudios de ZPL y fundamentos técnicos para la Circular emitida por la AM.

Estructura de la presentación NGENERÍA CIVIL

Introducción	
Objetivos	
Metodología	
Resultados	
Conclusiones	
Sugerencias	

Sugerencias

DEBILIDADES (CORREGIR)

La actual circular emitida por la AM, respecto al no uso de la publicación SHOA 3201 y la aplicación de la formula de propagación.

AMENZAS

(AFRONTAR)

Las investigaciones en materia ambiental, que concluyen en nuevos descubrimientos, hacen que nuestra legislación quede obsoleta y vulnerable a futuras inversiones que afecten el medio ambiente.

FODA

FORTALEZAS

(MANTENER)

Que los estudios de oleaje en emisarios submarinos sean material base para el cálculo de la ZPL.

OPORTUNIDADES

(EXPLOTAR)

La opción de perfeccionar la circular, usando el Know How (saber hacer) que poseen las Universidades, la empresa privada y la Autoridad Marítima.

Metodología para determinar el ancho de la Zona de Protección Litoral (ZPL)

Trabajo para optar al título de Ingeniero Civil Oceánico

Alumno Memorista : Marco Gallegos Jeria

Profesor guía : Felipe Caselli Benavente