MANEJO DE ARENAS CONTAMINADAS PARA EL DISEÑO DE LA PLAYA ARTIFICIAL EL SALITRE, TOCOPILLA

Mario Venenciano Vivanco Enero 2014

CONTENIDO

INTRODUCCIÓN

OBJETIVOS

ANÁLISIS DE CONDICIONES NATURALES

ANÁLISIS DE CALIDAD AMBIENTAL DE SEDIMENTOS

CONFIGURACIÓN DE PLAYA ARTIFICIAL

MANEJO DE ARENAS CONTAMINADAS

CONCLUSIONES Y RECOMENDACIONES

INTRODUCCIÓN

INTRODUCCIÓN

- Contaminación del borde costero con metales pesados y material particulado de origen minero.
- Construcción de la playa artificial Covadonga.
- Proyecto de diseño de la playa artificial El Salitre.
- El propósito del proyecto de título es analizar alternativas de manejo para las arenas contaminadas.

OBJETIVOS

OBJETIVOS

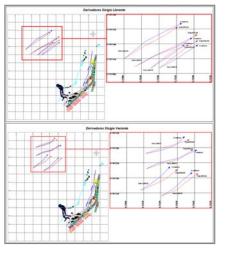
OBJETIVO GENERAL

El objetivo general del presente Proyecto de Título, es realizar un estudio que contribuya al diseño de la playa artificial El Salitre, mediante el análisis técnico-económico de alternativas de manejo para los sedimentos contaminados que se encuentran en el sitio de estudio.

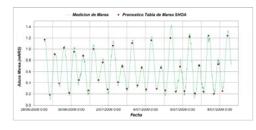
OBJETIVOS ESPECÍFICOS

- Analizar las condiciones naturales del sector en estudio.
- Proponer y analizar la configuración de una playa artificial.
- Analizar la calidad ambiental de los sedimentos que se encuentran en la playa.
- Estimar los volúmenes de arenas contaminadas que se encuentran en el sitio de estudio y en el área directa del proyecto.
- Estudiar y analizar alternativas de manejo para las arenas contaminadas, con sus respectivos costos económicos.

ANÁLISIS DE CONDICIONES NATURALES


ANÁLISIS DE CONDICIONES NATURALES

TOPO-BATIMETRÍA


CORRIENTES

OLEAJE

MAREA

Planos Maréales 2007, 2008 y 2009 Tocopilla	mNRS
Pleamar Máxima	1.55
Promedio Pleamares Mayores	1.13
Promedio Pleamares	0.96
Nivel Medio	0.62
Promedio Bajamares	0.28
Promedio Bajamares Menores	0.23
Bajamar Mínima (*)	-0.03 (*)
Nivel de Reducción de Sondas (NRS)	0

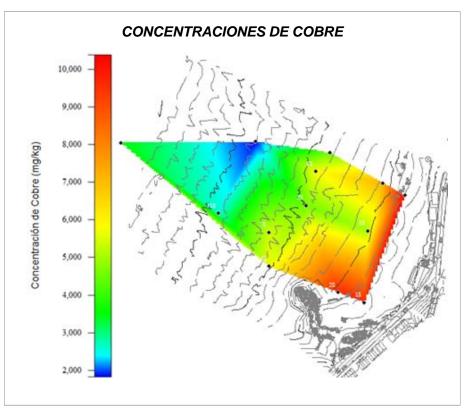
GRANULOMETRÍA

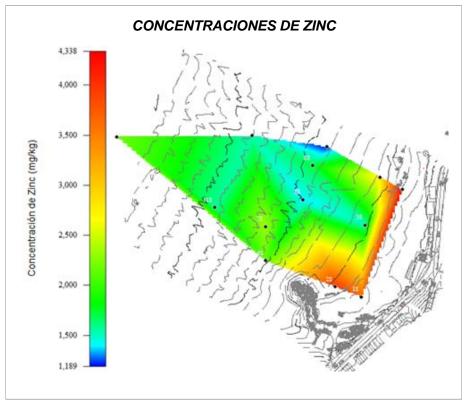
Estaciones	Tamaño Promedio (mm)	Tipo Sedimentario (Wentworth)
1S	0.35	Arena Mediana
2S	0.33	Arena Mediana
38	0.39	Arena Mediana
4S	0.33	Arena Mediana
58	0.32	Arena Mediana
6S	0.33	Arena Mediana
7S	0.34	Arena Mediana
88	0.36	Arena Mediana
98	0.35	Arena Mediana
10S	0.36	Arena Mediana
11S	0.35	Arena Mediana
128	0.17	Arena Fina
13S	0.11	Arena Muy Fina

ANÁLISIS DE CALIDAD AMBIENTAL DE SEDIMENTOS

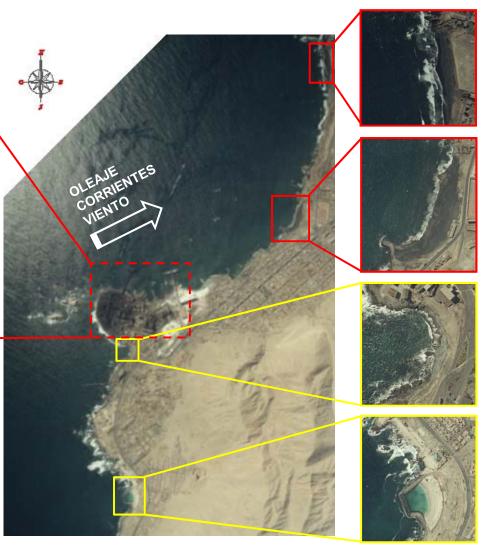
NORMATIVA Y CONCENTRACIONES DE METALES

Parámetro	CEDEX (España) (mg/Kg)
Arsénico (As)	80
Cadmio (Cd)	0.5
Cromo total (Cr)	200
Cobre (Cu)	50
Mercurio (Hg)	0.3
Niquel (Ni)	-
Plomo (Pb)	60
Zinc (Zn)	250


Estación	Concentraciones de Metales Pesados (mg/Kg)								
ESIACION	Nitrógeno	Fósforo	Arsénico	Cadmio	Cobre	Cromo	Mercurio	Plomo	Zinc
1S	94.1	245.4	2.3	0.2	9,624	21.3	0.1	34.9	3,655
2S	90.7	256.0	1.9	0.4	9,692	23.3	0.1	30.7	3,972
3S	85.2	6.1	2.7	0.2	5,023	21.0	0.1	18.0	1,517
48	80.5	223.0	2.8	0.4	7,128	8.8	0.1	24.1	2,744
5S	55.2	111.5	3.0	0.5	10,390	10.2	0.1	32.3	4,338
6S	54.5	19.7	3.1	0.3	5,674	21.3	0.1	15.8	2,114
7S	54.7	17.1	2.2	0.2	5,347	25.2	0.1	16.0	2,335
8S	54.0	12.8	2.6	0.3	4,558	19.8	0.2	10.2	1,384
98	54.0	18.0	2.5	0.3	5,753	20.8	0.2	10.0	1,711
10S	54.5	4.6	2.2	0.4	4,520	17.0	0.2	3.1	1,189
11S	71.1	24.9	2.9	<0.2	2,604	27.5	0.1	16.0	1,580
12S	70.7	29.9	2.8	<0.2	1,823	30.2	0.1	17.3	1,536
13S	67.0	5.4	2.8	0.2	3,557	20.8	0.1	23.0	2,184
Promedio	68.2	75.0	2.6	0.3	5,823	20.6	0.1	19.3	2,328
Máximo	94.1	256.0	3.1	0.5	10,390	30.2	0.2	34.9	4,338
Mínimo	54.0	4.6	1.9	0.2	1,823	8.8	0.1	3.1	1,189



DISTRIBUCIÓN DE LAS CONCENTRACIONES

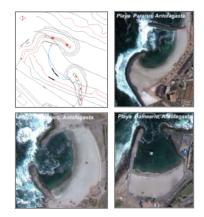


ORIGEN DE LA CONTAMINACIÓN

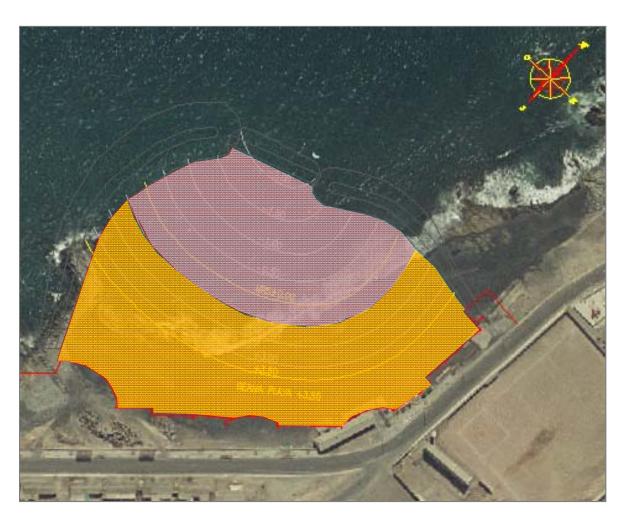
PELIGROSIDAD DE LAS ARENAS

Las arenas se clasificaron como residuos industriales **No Peligrosos**.

ANÁLISIS DE CALIDAD AMBIENTAL DE SEDIMENTOS


CONFIGURACIÓN DE PLAYA ARTIFICIAL

CONFIGURACIÓN DE PLAYA ARTIFICIAL


Parábola Hsu (1989)

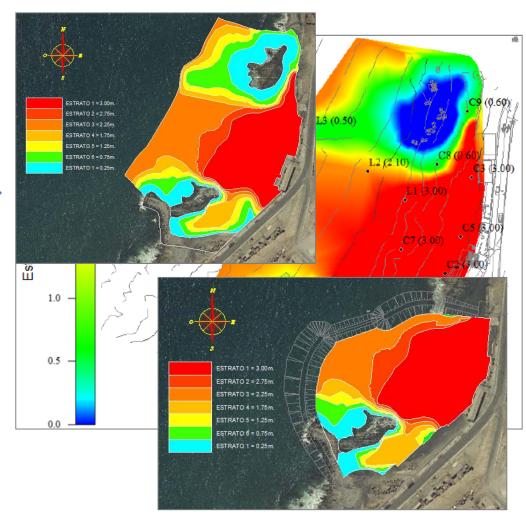
$$\frac{R}{R_0} = C_0 + C_1 \left(\frac{\beta}{\theta}\right) + C_2 \left(\frac{\beta}{\theta}\right)^2$$

Perfil de Equilibrio, Dean (1977)

$$h = Ax^{\frac{2}{3}}$$

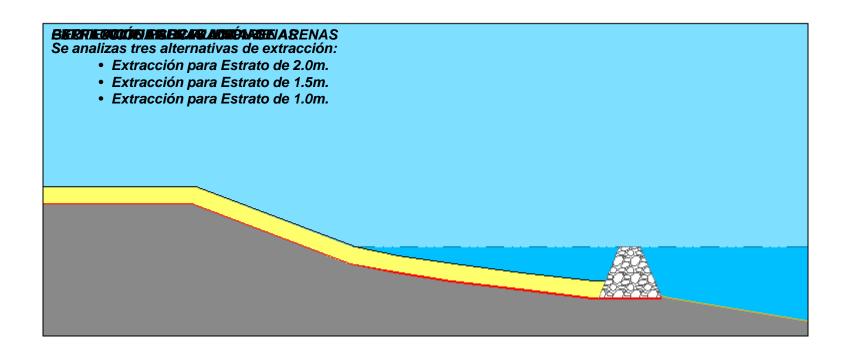
- Longitud de Playa: 250 m.
- Superficie Total **21.085** m²
 - Superficie Agua: **10,356** m²
 - Superficie Playa 16,729 m²

VOLÚMENES DE ARENAS A MANEJAR

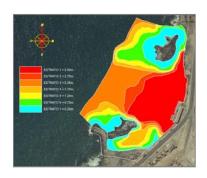


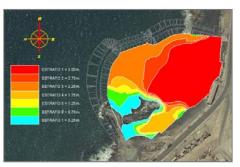
VOLUMEN TOTAL DE ARENAS EN LA PLAYA Y EN PROYECTO

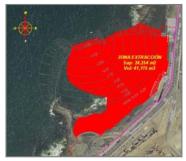
- Lanzas de Agua (6)
- Calicatas (9)

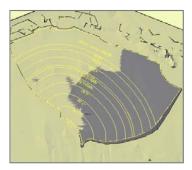


ALTERNATIVAS DE EXTRACCIÓN PARCIAL DE ARENAS









VOLÚMENES DE ARENAS A MANEJAR

ALTERNATIVAS DE EXTRACCIÓN	VOLUMEN DE EXTRACCIÓN ARENAS (m³)
Extracción Total	80,959
Extracción Total Proyecto	57441
Extracción Estrato 2.0 m	53,587
Extracción Estrato 1.5 m	41,175
Extracción Estrato 1.0 m	7 29,9728

MANEJO DE ARENAS CONTAMINADAS

ALTERNATIVAS DE MANEJO

Se analizan tres alternativas de manejo para las arenas contaminadas:

- Traslado de las arenas a una planta de tratamiento.
- Vertido de las arenas en el mar.
- Reutilización de arenas.

TRASLADO DE LAS ARENAS A UNA PLANTA DE TRATAMIENTO

PLANTA HIDRONOR - ANTOFAGASTA

VERTIDO DE LAS ARENAS EN EL MAR

Tipo	Draga de succión en marcha y estacionaria.
Año de Construcción	1975 en Valdivia
Dimensiones	Eslora 51,1 m
	Manga 12,0 m
	Puntal 4,6 m
	Calado máximo 4,0 m
Propulsión	Dos motores diesel Caterpillar de 565 HP a 1.500 RPM
Planta da Enargía	Dos generadores principales de 150 KVA cada uno. Un generador
Planta de Energía	auxiliar o de puerto de 50 KVA.
Acomodaciones	Completas para 20 personas
Dotación de Trabajo	17 oficiales y tripulantes
Puerto Base	Valdivia

MANEJO DE ARENAS CONTAMINADAS

CLASIFICACION DE ARENAS PARA VERTIDO EN EL MAR

Rangos de clasificación de material dragado (CEDEX 1994)

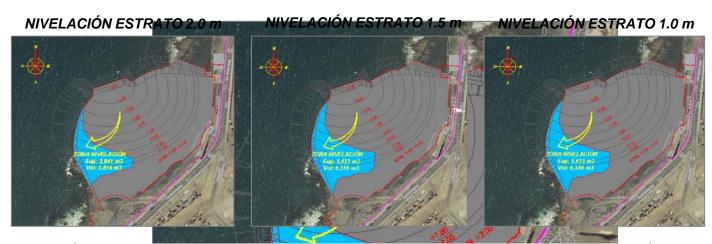
CEDEX 1994 (España)	Concentraciones (mg/Kg)						
CEDEX 1994 (Espana)	Arsénico	Cadmio	Cobre	Mercurio	Plomo	Cromo	
Categoría I	< 80	< 1	< 100	< 500	< 0.6	< 120	< 200
Categoría II	80 - 200	1 - 5	100 - 400	500 - 3000	0.6 - 3	120 - 600	200 - 1000
Categoría III a	200 - 1600	5 - 40	400 - 3200	3000 - 24000	3 - 24	600 - 4800	1000 - 8000
Categoría III b	> 1600	> 40	> 3200	> 24000	> 24	> 4800	> 8000

- Categoría I: Los materiales de esta categoría podrán verterse libremente en el mar.
- Categoría II: Se podrán verter de al mar de forma contralada.
- Categoría III: No se recomienda realizar el vertido en el mar. Caso contrario el material deberá ser aislado de las aguas marinas (aislamiento blando ó duro).

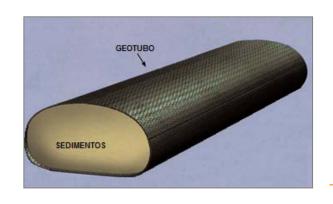
		Concentraciones de Metales Pesados (mg/Kg)							
	Arsénico Cadmio Cobre Zinc Mercurio Plomo Cromo								
Concentraciones Medias	2.6	0.3	5,823	2,328	0.1	19.3	20.6		
Concentraciones Máximas	3.1	0.5	10,390	4,338	0.2	34.9	30.2		

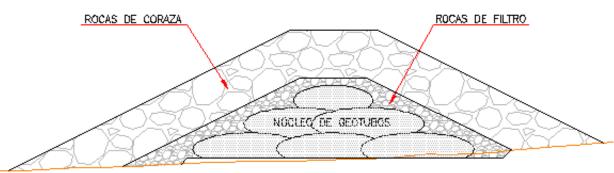
NO SERÍA RECOMENDABLE REALIZAR EL VERTIDO EN EL MAR

ALTERNATIVAS DE REUTILIZACIÓN DE LAS ARENAS



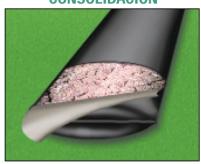
REUTILIZACIÓN DE ARENAS EN NIVELACIÓN DE LA PLAYA


ALTERNATIVA DE EXTRACCIÓN	SUPERFICIE NIVELACION (m²)	VOLUMEN NIVELACIÓN (m³)
Extracción Estrato 2.0 m	3,841	3,818
Extracción Estrato 1.5 m	5,422	6,356
Extracción Estrato 1.0 m	7,978	10,088



REUTILIZACIÓN DE ARENAS EN ROMPEOLAS CON NÚCLEO DE GEOTUBOS

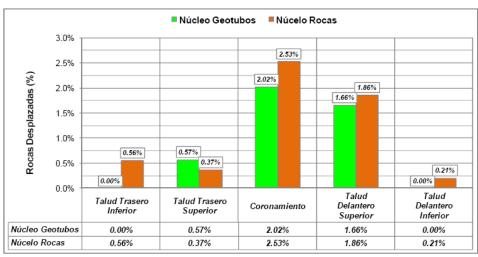
FUNCIONAMIENTO DE LOS GEOTUBOS


CONFINAMIENTO

DRENAJE

CONSOLIDACION

MODELACIÓN FÍSICA DE SECCIÓN DE ROMPEOLAS



MODELACIÓN ROMPEOLAS NÚCLEO DE GEOTUBOS

MODELACIÓN ROMPEOLAS NÚCLEO DE ROCAS

VOLUMEN DE ARENAS A REUTILIZAR EN LOS GEOTUBOS

Rompeolas Norte	Cantidad	Longitud (m)	Volumen (m³/m)	Volumen Arenas (m³)
Geotubo GT1000, C 10.70m, L=20 m	1	20	5.93	119
Geotubo GT1000, C 10.70m, L=22 m	2	22	5.93	261
Geotubo GT1000, C 10.70m, L=25 m	2	25	3.00	150
Geotubo GT1000, C 10.70m, L=25 m	4	25	5.93	593
Geotubo GT1000, C 13.70m, L=25 m	1	25	10.97	274
V	1,397			

Rompeolas Sur	Cantidad	Longitud (m)	Volumen (m³/m)	Volumen Arenas (m³)
Geotubo Gt1000, C 15.20m, L=20 m	1	20	10.86	217
Geotubo Gt1000, C 15.20m, L=25 m	1	25	10.86	272
Geotubo Gt1000, C 12.20m, L=20 m	11	20	7.05	1,551
Geotubo Gt1000, C 12.20m, L=25 m	5	25	7.05	881
Geotubo Gt1000, C 16.8m, L=20 m	10	20	11.48	2,296
Geotubo Gt1000, C 16.8m, L=25 m	5	25	11.48	1,435
Geotubo Gt1000, C 16.8m, L=22 m	2	22	11.48	505
Geotubo Gt1000, C 16.8m, L=24 m	3	24	11.48	827
	Volumen Tota	al de Arenas -	Rompeolas Sur	7,984

• Volumen Total Arenas Reutilizadas en Geotubos: 9,381 m3

REUTILIZACIÓN DE ARENAS EN RELLENO DE OBRAS TERRESTRES

• Se podrían rreutilizar 6,056 m3 de arenas como material de relleno.

AMPLIACIÓN DE OBRAS EN PROYECTO MINVU

SECTOR SUR: REUTILIZA 3,589 m³

SECTOR SUR: REUTILIZAR 2,130 m³

DISTRIBUCIÓN DE ARENAS REUTILIZADAS

ALTERNATIVA DE EXTRACCIÓN	EXTRACCIÓN (m³)	NIVELACIÓN PLAYA	NÚCLEO ROMPEOLAS (GEOTUBOS)	RELLENO OBRAS TERRESTRES	RELLENO AMPLIACIÓN OBRAS TERRESTRES	TOTAL ARENAS REUTILIZADAS (m³)
Extracción Total	80,959	0	9,381	6,056	5,719	21,156
Extracción Total Proyecto	57,711	0	9,381	6,056	5,719	21,156
Extracción Estrato 2.0 m	53,587	3,818	9,381	6,056	5,719	24,974
Extracción Estrato 1.5 m	41,175	6,356	9,381	6,056	5,719	27,512
Extracción Estrato 1.0 m	29,928	10,088	9,381	6,056	5,719	31,244

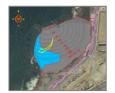
COSTOS ECONÓMICOS DE ALTERNATIVAS DE MANEJO

COSTOS TRASLADO DE LAS ARENAS A UNA PLANTA DE TRATAMIENTO

ALTERNATIVA	VOL. EXTRACCIÓN (m³)	COSTO TOTAL
Extracción Total	80,959	\$11,918,864,939
Extracción Total Proyecto	57,711	\$8,496,271,131
Extracción Estrato 2.0 m	53,587	\$7,889,131,727
Extracción Estrato 1.5 m	41,175	\$6,061,824,675
Extracción Estrato 1.0 m	29,928	\$4,406,030,088

COSTOS VERTIDO DE LAS ARENAS EN EL MAR

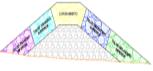
ALTERNATIVA	VOL. EXTRACCIÓN (m³)	COSTO TOTAL
Extracción Total	80,959	\$1,986,740,000
Extracción Total Proyecto	57,711	\$1,543,640,000
Extracción Estrato 2.0 m	53,587	\$1,395,940,000
Extracción Estrato 1.5 m	41,175	\$1,100,540,000
Extracción Estrato 1.0 m	29,928	\$952,840,000



COSTOS ECONÓMICOS DE ALTERNATIVAS DE MANEJO

COSTOS REUTILIZACIÓN DE ARENAS

NIVELACIÓN DE LA PLAYA



ALTERNATIVA DE EXTRACCIÓN	VOL. NIVELACIÓN (M³)	COSTO TOTAL
Extracción Estrato 2.0 m	3,818	\$79,497,000
Extracción Estrato 1.5 m	6,356	\$95,860,524
Extracción Estrato 1.0 m	10,088	\$120,040,152

• NÚCLEOS DE ROMPEOLAS

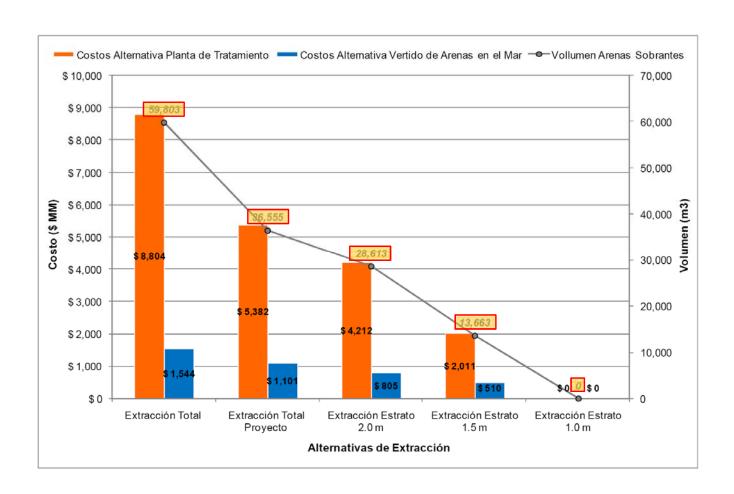
ROMPEOLAS CON NÚCLEO DE GOTUBOS	COSTO
ROMPEOLAS NORTE	
Núcleo	\$115,266,700
Coraza	\$419,935,000
Subtotal	\$535,201,700
ROMPEOLAS SUR	
Núcleo	\$463,196,600
Coraza	\$1,191,378,000
Subtotal	\$1,654,574,600
COSTO TOTAL	\$2,189,776,300

ROMPEOLAS CON NÚCLEO DE ROCAS	COSTO
ROMPEOLAS NORTE	
Núcleo	\$99,640,000
Coraza	\$419,935,000
Subtotal	\$519,575,000
ROMPEOLAS SUR	
Núcleo	\$477,614,000
Coraza	\$1,191,378,000
Subtotal	\$1,668,992,000
COSTO TOTAL	\$2,188,567,000
	ROMPEOLAS NORTE Núcleo Coraza Subtotal ROMPEOLAS SUR Núcleo Coraza Subtotal

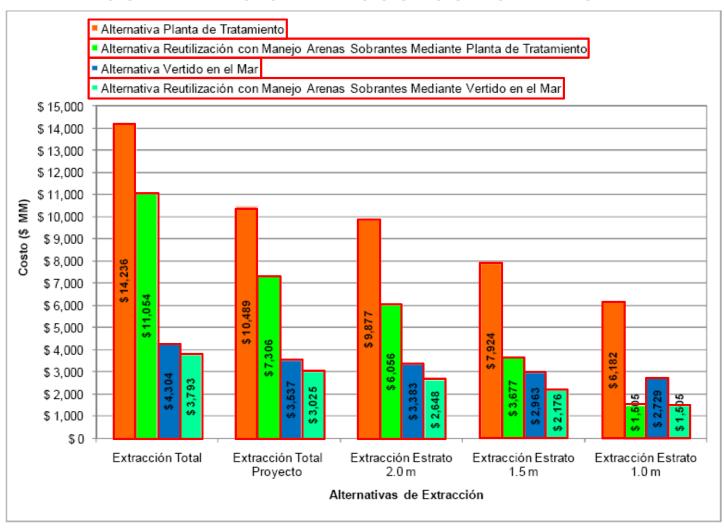
• RELLENO DE OBRAS TERRESTRES

RELLENO DE OBRAS TERRESTRES	COSTO TOTAL
ARENAS DE PLAYA	\$41,672,000
RELLENO GRANULAR	\$56,320,800

AMPLIACIÓN OBRAS TERRESTRES \$ 578,463,300


PLANTA TRATAMIENO: \$842 MM VERTIDO EN EL MAR: \$558 MM

ARENAS SOBRANTES EN ALTERNATIVAS DE REUTILIZACION



COMPARACIÓN DE COSTOS TOTALES

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES Y RECOMENDACIONES

CONDICIONES NATURALES:

• De acuerdo a la revisión de condiciones naturales del sector de estudio, se puede concluir que éstas no son perjudiciales para el desarrollo de un proyecto de playa artificial.

CALIDAD AMBIENTAL DE SEDIMENTOS:

- Elevadas concentraciones de metales pesados (Cobre y Zinc).
- Revisión bibliográfica y análisis de imágenes áreas, se detecta que el borde costero ha sido alterado con metales pesados.
- Arenas se clasificaron como Residuos Industriales No Peligrosos.

VOLUMEN DE ARENAS CONTAMINADAS:

- Volumen total de arenas contaminadas que se encuentran en la laya es de aproximadamente 81,000 m³.
- Volumen de arenas que se interviene con el proyecto es de aproximadamente 58,000 m³.
- Se analizaron alternativas de extracción parcial de arenas, las cuales forman estratos de arenas limpias, permitiendo disminuir los volúmenes y costos por el manejo. Los volúmenes para estas alternativas varían desde 30,000 m³ hasta 53,500 m³.

CONCLUSIONES Y RECOMENDACIONES

ALTERNATIVAS DE MANEJO DE ARENAS CONTAMINADAS:

- Alternativa de Trasladar las Arenas a una Planta de Tratamiento:
 - Técnicamente factible y ejecutable.
 - Se evita contaminar un sector para habilitarlo como botadero.
 - Presenta costos elevados.
- Alternativa de Verter las Arenas en el Mar:
 - Presenta menores costos que la alternativa de planta de tratamiento.
 - Por las elevadas concentraciones de metales pesados, no seria recomendable verter las arenas en el mar.
- Alternativa de Reutilización de Arenas:
 - Se analizaron tres alternativas para reutilizar las arenas.
 - Los rompeolas con geotubos no presentarían problemas de estabilidad, Además los costos serían similares a un rompeolas con núcleo de roca.
 - Al utilizar las arenas como material de relleno, las obras de contención no presentarían problemas de estabilidad, y se genera un ahorro para ambos proyectos. Además resulta más económico ampliar las obras del paseo costero, duplicando el volumen reutilizado, que trasladar las arenas a una planta de tratamiento o verterlas en el mar.
 - Con las alternativas analizadas, dependiendo del volumen de extracción a considerar, se podrían reutilizar desde **21,000 m³** hasta **31,000 m³**.

CONCLUSIONES Y RECOMENDACIONES

RECOMENDACIONES GENERALES PARA EL PROYECTO DE PLAYA ARTIFICIAL:

- Realizar el manejo de arenas contaminadas mediante la aplicación de las alternativas de reutilización de arenas.
- Seleccionar la alternativa de extracción que mejor cumpla los requerimientos ambientales y económicos del proyecto.
- Para el manejo de las arenas sobrantes se recomienda analizar la alternativa que mejor cumpla con los requerimientos del proyecto.
- Todas las alternativas analizadas consideran la extracción o movilización de las arenas existentes, y de acuerdo a la legislación ambiental vigente, se deben realizar los estudios ambientales correspondientes.
- Para la reutilización óptima de las arenas como material de relleno de las obras terrestres, se recomienda que el proyecto del MINVU se materialice de forma simultanea al proyecto de playa artificial.
- Realizar un análisis de calidad ambiental para las arenas limpias que serán depositadas en la nueva playa artificial. Además se recomienda realizar un seguimiento a la calidad ambiental de estas arenas.

RECOMENDACIONES PARA FUTURAS INVESTIGACIONES:

- Faenas Mineras para Recuperación de Metales Pesados
- Mezcla de Arenas Limpias con Arenas Contaminadas.
- Generación de Hormigones con Arenas Contaminadas.
- Estudiar el Comportamiento de Playas sobre Arenas Confinadas con Geotextil.

GRACIAS

