

"DETERMINACIÓN DE LA OPERABILIDAD DE UN BUQUE AMARRADO PARA EL FUTURO TERMINAL DE DESCARGA DE CARBON EN MEJILLONES, II REGIÓN"

CARLOS CÓRDOVA VÁSQUEZ

Memoria para optar al título de Ingeniero Civil Oceánico

Profesor Guía:

MAURICIO REYES GALLARDO

SEPTIEMBRE 2010

CONTENIDOS

- 1. INTRODUCCIÓN
- 2. <u>DESCRIPCIÓN DEL PROYECTO</u>
- 3. OBJETIVOS
- 4. METODOLOGÍA
- 5. MARCO TEÓRICO
- 6. APLICACIÓN A UN TERMINAL GRANELERO EN MEJILLONES
- 7. RESULTADOS
- 8. CONCLUSIONES Y RECOMENDACIONES

INTRODUCCIÓN

- Determinación de la operabilidad anual de dos tipos de buque de diseño.
- Calibración del modelo numérico de respuesta de buque TERMSIM II (MARIN).
- Parámetros y variables de ingreso, obtenidas a partir de estudios existentes.
- Sugerencia y estudio de sistemas de atraque y amarre, características de cada buque y restricciones de movimiento.

DESCRIPCIÓN DEL PROYECTO

ÁREA DE ESTUDIO

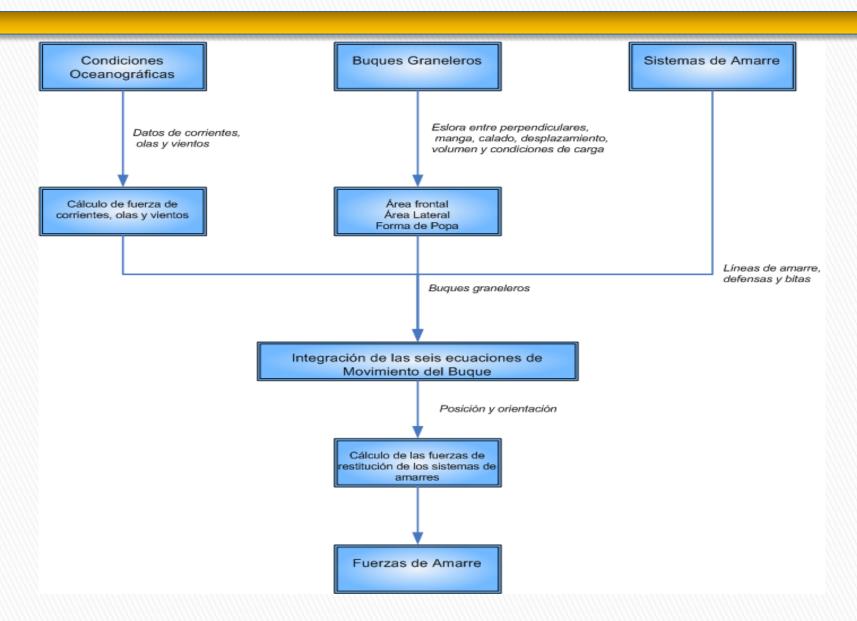
FIGURA 1: Foto satelital de la zona del proyecto.

FUENTE: Software Google Earth, versión 2009.

ANTECEDENTES

- Ubicado a 61 Km de Antofagasta, Il Región.
- Población total de 5576 habitantes (INE 2006).
- Principales actividades:
 - Industria Pesquera.
 - Generación de Electricidad.
 - Recepción de Gas.
- Coordenadas Geográficas:
 - Latitud: 23° 08' S- Longitud: 70° 41' W

OBJETIVOS



OBJETIVOS ESPECÍFICOS

- Explicar y analizar los fundamentos teóricos del software TERMSIM II.
- Analizar y justificar teóricamente los antecedentes oceanográficos.
- Verificar que las tensiones de las espías, las cargas sobre bitas y las reacciones de las defensas no sobrepasen los valores recomendados de diseño.
- Determinar debilidades y/o fortalezas del layout propuesto. Emitir recomendaciones para los puntos de amarre y defensa.

METODOLOGÍA

TEORÍA DE LOS CUERPOS FLOTANTES

1. Fuerzas de Olas Regulares

$$\vec{F} = -\frac{1}{2} \rho g \xi_a^2$$

Donde:

 ρ : presión sobre la estructura (kg/m²).

g : aceleración de gravedad (m/s²).

 ξ_a : amplitud de la ola (m).

2. Fuerzas de Olas Irregulares

$$\overrightarrow{F} = -\frac{1}{16} \rho g H_{1/3}$$

Donde:

 ρ : presión sobre la estructura (kg/m²).

g : aceleración de gravedad (m/s²).

 $H_{1/3}$: altura de la ola (m).

TEORÍA DE LOS CUERPOS FLOTANTES

3. Fuerzas del Viento

$$X_{wind} = 0.5 \rho_a V_{wr}^2 C_{wx}(\alpha_{wr}) A_T \qquad N_{wind} = 0.5 \rho_a V_{wr}^2 C_{wn}(\alpha_{wr}) A_L L_{pp}$$

$$Y_{wind} = 0.5 \rho_a V_{wr}^2 C_{wy} (\alpha_{wr}) A_L$$

Donde:

ρ_a : Densidad del aire.

 V_{wr} : Velocidad relativa de viento instantánea con respecto a la velocidad del buque.

C_w : Coeficientes de la fuerza del viento.

 $\alpha_{_{\mathrm{MF}}}$: Ángulo relativo del viento con respecto al frente de la nave.

 A_T : Área transversal del buque expuesta al viento.

A_L : Área longitudinal del buque expuesta al viento.

 L_{pp} : Eslora del buque entre perpendiculares.

 X_{wind} : Fuerza longitudinal en sentido x, debido al viento.

 Y_{wind} : Fuerza transversal en sentido y, debido al viento.

 N_{wind} : Momento según Y_{wind} .

TEORÍA DE LOS CUERPOS FLOTANTES

4. Fuerzas de la Corriente

$$X_{current} = 0.5 \rho_w V_{cr}^2 C_{cx}(\alpha_{cr}) T L_{pp}$$

$$Y_{current} = 0.5 \rho_w V_{cr}^2 C_{cy}(\alpha_{cr}) T L_{pp}$$

$$N_{current} = 0.5 \rho_w V_{cr}^2 C_{cn}(\alpha_{cr}) T L_{pp}^2$$

Donde:

ρ_w : Densidad del agua.

 V_{σ} : Velocidad relativa de la corriente instantánea con respecto a la velocidad del buque.

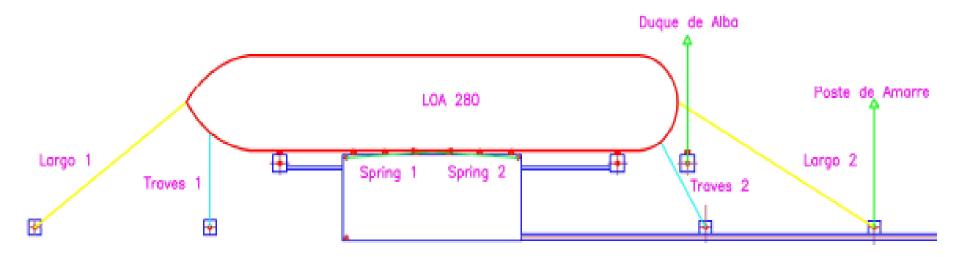
C_c : Coeficientes de la fuerza de la corriente.

 α_{cr} : Ángulo relativo de la corriente con respecto al frente de la nave.

T : Calado del buque.

 L_{vv} : Eslora del buque entre perpendiculares.

 $X_{current}$: Fuerza longitudinal en sentido x, debido a la corriente.


 $Y_{\it current}$: Fuerza transversal en sentido y, debido a la corriente.

 $N_{\it current}$: Momento según $Y_{\it current}$.

SISTEMA DE ATRAQUE

FIGURA 2: Representación de los duques de alba - postes de amarre

Características Fuerzas de Atraque

- Bahía semiprotegida.
- Velocidad de atraque, perpendicular a la línea de defensas.
- Tonelaje de desplazamiento del buque más la masa inercial de agua.
- Ángulo de Atraque.
- Fricción entre el buque y los paneles de defensas.
- Impacto en el punto (1/4).

Determinación de la Masa Adicional de Energía de Atraque

La determinación de la masa adicional, se calcula como:

$$W_a = \frac{\pi}{4} \cdot D^2 \cdot L \cdot \rho_w$$

Donde:

D : Calado máximo a plena carga (m).

L : Eslora de la nave (m).

ρ_w: Densidad del agua de mar (Ton/m³).

El peso virtual se calcula como:

$$W = \Delta + W_a$$

Donde:

Δ : Desplazamiento a plena carga (Ton).

 W_a : Masa adicional de energía de atraque (Ton).

Determinación de la Energía Cinética de Atraque

La energía cinética de atraque se calcula como:

$$E_0 = \frac{W \cdot V^2}{2g}$$

Donde:

W: Peso virtual (Ton).

V : Velocidad de atraque de la nave (m/s).

g : Aceleración de gravedad (m/s²).

Determinación de la Energía Efectiva de Atraque

La energía efectiva de atraque se calcula como:

$$E_f = E_0 \cdot k$$

Donde:

 E_0 : Energía cinética de atraque (Ton-m).

k : Coeficiente de aproximación.

Energía de Absorción de la Defensa y Reacción

La energía absorbida por la defensa y la reacción entregada al sistema será

$$E_a = E_s \cdot F_e$$

Donde:

 E_s : Energía absorbida por la defensa Cell Fenders (Ton-m)

 F_{e} : Factor de eficiencia para la absorción de energía.

$$R = R_s \cdot F_r$$

Donde:

 R_{ς} : Reacción emitida por la defensa Cell Fenders (Ton).

 F_r : Factor de eficiencia para la reacción.

Selección de la Defensa

Las características de la defensa que se efectuaron en la modelación numérica en el TERMSIM II se presenta en la siguiente tabla:

TABLA 1: Energía y Reacción de la Defensa Cell Fenders.

		5 .,	
	Altura [m]	Gr	ado RO
Tipo	Altura [m]	Fuerza Reacción [kN]	Energía Absorbida [kN-m]
C500H	0.50	125	22.6
SUC630H	0.63	182	44.1
SUC800H	0.80	292	92.2
SUC1000H	1.00	464	203.1
SUC1150H	1.15	614	309.0
SUC1250H	1.25	725	396.3
SUC1450H	1.45	976	619.0
SUC1600H	1.60	1189	831.9
SUC1700H	1.70	1342	997.7
SUC2000H	2.00	1857	1624.5
SUC2250H	2.25	2608	2567.3
SUC2500H	2.50	3221	3521.8
C3000H	3.00	5101	5346.5

Fuente: OCIMF (1992). The Oil Companies International Marine Forum.

MODELO TERMSIM II

- Es un software de simulación que analiza el comportamiento de barcos atracados.
- Los sistemas portuarios que permite analizar corresponder a tres tipos:
 - Mono Boya (SPM).
 - Multi Boya (MBM).
 - Muelles (Jetty).
- Modela los comportamientos en barcos petroleros o tankers.

MODELO TERMSIM II

 Las ecuaciones utilizadas para describir las variables que rigen el movimiento de un buque atracado a un muelle pueden describirse como:

$$mx_1 + \sum_{k=1}^6 \text{ Donde:}$$
 m, I : Masa y momento de inercia del barco.

 $mx_2 + \sum_{k=1}^6 X_i$: Grados de libertad del buque.

 $mx_3 + \sum_{k=1}^6 b_{ij}$: Coeficiente de masa adicional.

 $mx_3 + \sum_{k=1}^6 b_{ij}$: Funciones de retardo.

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerzas hidrodinámicas de restitución.

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerza del viento en la dirección i (1, 2 y 6).

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerza del viento en la dirección i (1, 2 y 6).

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerza del oleaje en la dirección i (1 a 6).

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerza del oleaje en la dirección i (1 a 6).

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerza de las líneas de amarre en la dirección i (1 a 6).

 $mx_4 + \sum_{k=1}^6 c_{ij}$: Fuerza de las líneas de amarre en la dirección i (1 a 6).

Limitaciones del Buque

Las restricciones de los movimientos admisibles para los buques graneleros se presentan en la siguiente tabla:

TABLA 2: Movimientos admisible nave granelera.

Surge (m)	Sway (m)	Heave (m)	Yaw (°)	Pitch (°)	Roll (°)		
2	1	1	2	2	6		

Fuente: PIANC. Asociación Permanente de Congresos de Navegación.

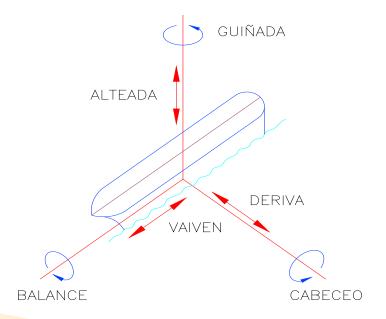


FIGURA 3: Movimientos admisible nave granelera.

Características del Sistema a Modelar

1. Naves de Diseño

TABLA 3: Características nave granelera LOA 280.

Transportador de Granel (LOA 280 m)								
Descripción	Unidad	Valor						
Peso muerto (DWT)	Ton	180.000						
Desplazamiento a plena carga	Ton	195.000						
Eslora entre perpendiculares	m	266						
Manga	m	45						
Puntal	m	24.7						
Calado máximo	m	18						
Calado mínimo	m	8.7						

TABLA 4: Características nave granelera LOA 180.

Transportador de Granel (LOA 180 m)								
Descripción	Unidad	Valor						
Peso muerto (DWT)	Ton	30.000						
Desplazamiento a plena carga	Ton	40.000						
Eslora entre perpendiculares	m	171						
Manga	m	26.6						
Puntal	m	14.4						
Calado máximo	m	10.3						
Calado mínimo	m	3.4						

٧

19

Características del Sistema a Modelar

2. Desplazamiento a Plena Carga

 Para determinar el desplazamiento de la nave granelera se requiere a un determinado nivel de carga de la nave utilizar el concepto de coeficiente de bloque.

$$C_b = \frac{\Delta}{L_{pp} \cdot M \cdot C \cdot \rho_w}$$

Donde:

M : Manga de la nave (m).

 ${\it C}$: Calado de la nave (m).

 ρ_w : Densidad del agua de mar (Ton/m³).

 Δ : Desplazamiento de la nave (Ton).

 L_{pp} : Eslora entre perpendiculares (m).

Características del Sistema a Modelar

TABLA 5: Coeficiente de bloque naves graneleras.

Nave	Coeficiente de Bloque (Cb)
LOA280	0.88
LOA180	0.83

El volumen de agua desplazada por la nave en la condición máxima y mínima se calcula como:

$$V = \frac{\Delta}{\rho_w}$$

Donde:

 Δ : Desplazamiento máximo y mínimo de la nave (Ton).

 ρ_w : Densidad del agua de mar (Ton/m³).

Características del Sistema a Modelar

TABLA 6: Volumen máximo y mínimo nave granelera.

Nave	Volumen Máximo (m³)	Volumen Mínimo (m³)			
LOA 280	30 189.320 4.214				
LOA 180	38.835	1.462			

3. Determinación Área Expuesta

Para calcular el área transversal y longitudinal con que impacta el viento sobre la nave se utilizarán las siguientes formulaciones:

Donde:

M: Manga de la nave (m).

 h_T : Altura media de la superficie $A_T = M \cdot \left(G + h_T\right)$ la nave por encima de la cubierta, proyectada sobre un plano trans

 h_L : Altura media de la superficie $A_L = L_{pp} \cdot (G + h_L)$ la nave por encima de la cubierta, proyectada sobre un plano long.

G: Francobordo de la nave (m).

 L_{pp} : Eslora entre perpendiculares (m).

 A_T : Área de proyección transversal de la nave expuesta a la acción del viento (m²).

 A_L : Área de proyección longitudinal de la nave expuesta a la acción del viento (m²).

Características del Sistema a Modelar

TABLA 7: Área expuesta de la nave al viento LOA 280.

Descripción	Unidad	Carga Máxima	Carga Mínima			
Manga	m	45				
Eslora entre Perpendiculares	m	26	6			
Puntal	m	24	.7			
Calado	m	18 8.7				
Francobordo	m	6.7 16				
Altura media superficie transversal	m	20				
Altura media superficie Longitudinal	m	5				
Área de proyección transversal	m ²	1201.5 1620				
Área de proyección longitudinal	m ²	2778.8	4987.5			

TABLA 8: Área expuesta de la nave al viento LOA 180.

Descripción	Unidad	Carga Máxima	Carga Mínima		
Manga	m	26	.6		
Eslora entre Perpendiculares	m	17	′1		
Puntal	m	14	.4		
Calado	m	10.3 3.4			
Francobordo	m	4.1 11			
Altura media superficie transversal	m	11			
Altura media superficie Longitudinal	m	5			
Área de proyección transversal	m ²	401.7	585.2		
Área de proyección longitudinal	m ²	1556.1	2736		

Fuente: PIANC. Asociación Permanente de Congresos de Navegación.

Características del Sistema a Modelar

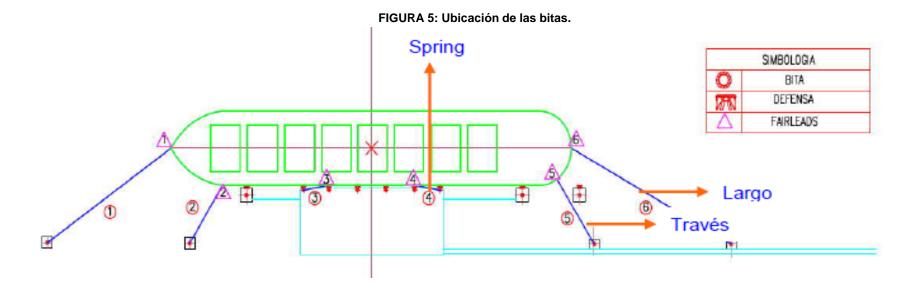
4. Coeficientes Hidrodinámicos

$$C_h = 1 + \frac{2C}{M}$$

Donde:

C : Calado de la nave (m).M : Manga de la nave (m).

Sistema de Amarre


1. Fairleads

25

Sistema de Amarre

2. Bitas

Sistema de Amarre

3. Líneas de Amarre

- Se ha conformado un sistema de amarre típico formado (2) largos, (4) espías y (2) spring.
- El modelo numérico TERMSIM II cuenta con una base de datos de distintos materiales para los sistemas de amarre, las cuales son:
 - Poliéster.
 - Nylon.
 - Polipropileno

TABLA 9: Características técnicas de amarras.

Material	Polipropileno			
Construcción	3 - Strand			
Mena	12"			
Carga de Rotura	867 kN (88.5 Ton)			
Pretensión 100 % de la carga de rotura				
Longitud	ongitud en springs (a en largos de proa a popa)			

Fuente: OCIMF (1992). The Oil Companies International Marine Forum.

Estudio de Condiciones Naturales

1. Estudio de Oleaje

Los resultados del clima de oleaje son los siguientes:

TABLA 10: Incidencia de altura de olas (Hs) por período (Tp).

	0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	22.0		
H _s [m]	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	Total	T _p [s]
0.0 - 0.1			0.03	0.04	0.16	1.14	0.85	0.21	0.05	0.02		2.50	19.77
0.1 - 0.2		0.01	0.08	0.51	2.44	12	13.4	3.74	1.57	0.41	0.13	34.26	23.92
0.2 - 0.3		0.01	0.05	0.16	0.73	4.44	14.9	6.13	3.15	0.61	0.15	30.29	23.92
0.3 - 0.4		0.02	0.03	0.01	0.14	0.41	6.10	5.94	3.13	0.54	0.17	16.49	23.92
0.4 - 0.5		0.01	0.03		0.03	0.04	1.26	4.27	2.57	0.63	0.14	8.98	23.92
0.5 - 0.6		0.00	0.03				0.20	1.73	1.83	0.38	0.08	4.25	23.92
0.6 - 0.7			0.01				0.02	0.61	1.14	0.33	0.04	2.15	21.96
0.7 - 0.8			0.00				0.01	0.14	0.31	0.08	0.02	0.56	21.89
0.9 - 1.0								0.06	0.20	0.05	0.01	0.32	21.68
1.0 - 1.1								0.01	0.05	0.01		0.07	19.93
1.1 - 1.2									0.06	0.01		0.07	19.7
1.2 - 1.3									0.04	0.00		0.04	19.53
1.3 - 1.4									0.00	0.00		0.01	19.42
1.4 - 1.5													
1.5													

Fuente: Baird & Associates S.A. Estudio Oleaje en Central Termoeléctrica de Mejillones, Il Región, Chile.

Estudio de Condiciones Naturales

TABLA 11: Incidencia de altura de olas (Hs) por dirección (D).

	Altura de Ola [m]																
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0	1.1	1.3	1.4			
D [°]	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0	1.1	1.2	1.4	1.5	1.5	Total	H _s [m]
0.00																	
40.00																	
270.00																	
300.00	0.22	1.62	0.27	0.01												2.12	0.34
310.00	1.59	17.10	7.23	1.02	0.10	0.01										27.05	0.56
320.00	0.69	15.47	22.67	15.31	8.78	4.19	2.13	0.55	0.32	0.07	0.07	0.04	0.01			70.30	1.22
330.00	0.00	0.07	0.10	0.11	0.07	0.04	0.02	0.01								0.42	0.74
340.00		0.02	0.03	0.04	0.02	0.03	0.01	0.00								0.15	0.72
350.00																	

 Se estableció que la condición límite tanto para la ejecución de maniobras como para la operación de transferencia en el terminal marítimo sería de una ola de 0.8 m de altura máxima.

Estudio de Condiciones Naturales

2. Estudio de Vientos

Los efectos que el viento produce sobre las áreas expuestas del buque amarrado operando consideran las siguientes velocidades y direcciones:

Viento Frontal a la Nave : 14 nudos. Viento Transversal a la Nave : 14 nudos.

3. Estudio de Corrientes

Se considera una corriente en sentido al oleaje que actúa sobre el buque de 0,4 nudos.

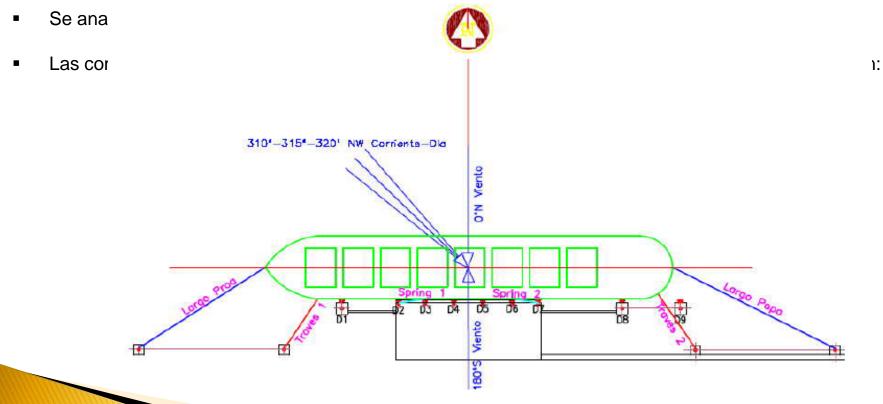
Estudio de Condiciones Naturales

4. Estudio de Mareas

Las características de las mareas normales (astronómicas) en la bahía de Mejillones son las siguientes:

TABLA 12 : Características de la marea en Mejillones.

Descripción	Altura Sobre NRS (m)
Nivel Medio del Mar (NMM)	0,783
Nivel de Reducción de Sondas (NRS)	0,000
Bajamar Mínima	0,184
Altura Media de la Bajamar Inferior	0,313
Altura Media de las Bajamares	0,385
Altura Media de las Pleamares	1,181
Altura Media de la Pleamar Superior	1,374
Pleamar Máxima	1,662


FUENTE: SHOA. Servicio Oceanográfico de la Armada.

Casos de Estudio

 La distribución anual de altura y dirección de olas, muestra que el mayor porcentaje de olas se presenta en la dirección distribuida entre los 310° y 320°.

FIGURA 6: Buque granelero v/s condiciones oceanográficas.

Casos de Estudio

TABLA 13: Buque granelero v/s condiciones oceanográficas.

Casos	Viento	Corriente	Ola
Α	Perpendicular a la nave en dirección al sitio 0° N	Frontal a la nave 320°	Frontal a la nave 320°
A'	Perpendicular a la nave en dirección contraria al sitio 180º S	NW	NW
В	Perpendicular a la nave en dirección al sitio 0° N	Frontal a la nave 315°	Frontal a la nave 315°
B'	Perpendicular a la nave en dirección contraria al sitio 180º S	NW	NW
С	Perpendicular a la nave en dirección al sitio 0° N	Frontal a la	Frontal a la nave 310°
C'	Perpendicular a la nave en dirección contraria al sitio 180º S	nave 310° NW	NW

FUENTE: PROCON S.A. Ingeniería. Criterio de Diseño Terminal Marítimo de Mejillones.

Criterios para Estimación de la Operabilidad

1. Tensiones Admisibles en las Espías de Amarre

 La tensión máxima admisible en las espías se estableció igual al 100% de la carga de la rotura, es decir, 88,5 Ton para la espía de 12" de mena.

2. Cargas Admisibles en las Defensas

 Se considera una carga máxima correspondiente a la reacción de la defensa para un nivel de deformación del 60%, es decir, 159, 51 Ton.

Porcentajes de Operabilidad

Los porcentajes de operabilidad para los buques LOA 280 y LOA 180 y sus respectivas condiciones limitantes se presentan en las siguientes tablas:

TABLA 14: Porcentaje Operabilidad – Condición Máxima LOA 280.

OPERABILIDAD [%]				
Casos	Carga Máxima	Condición Limitante		
Α	99,77	Largo Proa-Defensa 1		
A'	99,48	Traves 2-Defensa 1		
В	99,99	Largo Proa-Largo Popa		
B'	99,99	Largo Proa		
С	99,47	Largo Proa-Defensa 1		
C'	99,45	Largo Proa-Traves 1-Defensa 1		

TABLA 15: Porcentaje Operabilidad – Condición Mínima LOA 280.

OPERABILIDAD [%]				
Casos	Carga Mínima	Condición Limitante		
Α	99,59	Largo Popa-Traves 2-Defensa 9		
Α'	99,78	Spring 2-Traves 2		
В	99,91	Largo Proa		
B'	99,91	Largo Proa		
С	99,71	Largo Proa-Defensa 1		
C'	99,71	Largo Proa-Defensa 1		

Porcentajes de Operabilidad

TABLA 16: Porcentaje Operabilidad – Condición Máxima LOA180.

OPERABILIDAD [%]				
Casos	Carga Máxima	Condición Limitante		
Α	98,63	Spring 2-Traves 2		
A'	98,63	Spring 2-Traves 2		
В	98,67	Spring 2-Traves 2		
B'	98,67	Spring 2-Traves 2		
С	98,61	Spring 2-Traves 2		
C'	98,63	Traves 2		

TABLA 17: Porcentaje Operabilidad – Condición Mínima LOA180.

OPERABILIDAD [%]				
Casos	Carga Mínima	Condición Limitante		
Α	98,63	Spring 2-Traves 2		
Α'	98,63	Spring 2-Traves 2		
В	98,67	Traves 2		
B'	98,67	Traves 2		
С	99,67	Spring 2-Traves 2		
C'	100,00	-		

CONCLUSIONES Y RECOMENDACIONES

- Sensibilidad de los buques frente a las condiciones oceanográficas.
- Para los movimientos horizontales y verticales del buque, los desplazamientos y oscilaciones máximas obtenidas para distintas condiciones oceanográficas resultaron inferiores a las restricciones propuestas por el PIANC.
- El sistema de defensas y amarres, las oscilaciones máximas obtenidas para los buques graneleros LOA 180 y LOA 280 m, bajo condición de carga máxima y mínima resultaron bajo las restricciones propuestas por el PIANC. La operabilidad anual con condición de carga máxima para los buques LOA 280 y LOA 180 m es de 99,69% y 98,64%. Para la condición de carga mínima para los mismo buques fue de 99,77% y 99,04%.
- La condición limitante que obtuvieron ambos buques graneleros, se debe a alturas significativas de oleaje superior a los 0,8 m con periodos de onda entre 16 a 20 s.
- Para sensibilizar la operabilidad anual para el buque granelero LOA 280 m, con espías de tipo poliéster, bajo condición de carga máxima y mínima. La operabilidad anual es de un 99,88% y 99,81%.
- TERMSIM II, es una herramienta poderosa y útil en el desarrollo de esté tipo de estudios.
- Es recomendable contar con obras de abrigo de costa, como son molos de abrigo o espigones, frente a oleaje caracterizado por ángulos de incidencia variable.

MUCHAS GRACIAS